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Dirty data are prevalent in time series, such as energy consumption or stock data. Existing data cleaning
algorithms present shortcomings in dirty data identification and unsatisfactory cleaning decisions. To handle
these drawbacks, we leverage inherent recurrent patterns in time series, analogize them as fixed combinations
in textual data, and incorporate the concept of perplexity. The cleaning problem is thus transformed to
minimize the perplexity of the time series under a given cleaning cost, and we design a four-phase algorithmic
framework to tackle this problem. To ensure the framework’s feasibility, we also conduct a brief analysis of
the impact of dirty data and devise an automatic budget selection strategy. Moreover, to make it more generic,
we additionally introduce advanced solutions, including an ameliorative probability calculation method
grounded in the homomorphic pattern aggregation and a greedy-based heuristic algorithm for resource
savings. Experiments on 12 real-world datasets demonstrate the superiority of our methods.
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1 INTRODUCTION
Time series data are rarely free of dirty values, such as sensor data from unreliable devices [27],
energy consumption data measured by malfunctioning metering systems [29], or even stock and
flight data [31] , which we believe to be fairly clean. For instance, concerning stock prices, some
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sources inaccurately associate the symbol SY with SALVEPAR rather than SYBASE because they
share the same SY symbol in specific sources.
In the data analysis realm, such as classification [30], clustering [39] , and forecasting [13], the

utilization of dirty data will compromise the analytical quality and render it unreliable. A straightfor-
ward solution involves employing anomaly detection algorithms to identify and discard anomalies.
Regrettably, while handling a sole univariate time series, this approach will also undermine the
analytical quality, particularly when considering consecutive dirty points [51]. Hence, time series
data cleaning algorithms have been proposed and adopted to rectify dirty time points and improve
data quality. Recent studies [40, 50] have proved their effectiveness for time series classification
and forecasting tasks on various datasets.
Traditional time series data cleaning algorithms focus on smoothing technology, including

Moving Average (MA) and AutoRegression (AR). MA determines a specific data point’s cleaning
result by calculating its adjacent points’ weighted average. Despite simplicity, it tends to over-clean,
as it modifies almost all data points, many of which were initially correct. AR fits a model with the
given time series and applies it in reverse to generate predictions. A data point is considered dirty
if it deviates significantly from the prediction, and the prediction is used for cleaning. Nevertheless,
the dirty data will adversely impact the fitting process, undermining its efficacy.

Evening

Midnight

Fig. 1. Exemplary part of energy consumption data

In recent years, numerous powerful algorithms have been developed following the minimum
change principle [5]. The constraint-based algorithm SCREEN [41] identifies and corrects points
exceeding a single-speed constraint, which was later extended to accommodate multi-speed con-
straints [16]. Another representative statistics-based algorithm, SpeedChange [50], incorporates
the likelihood cleaning concept from relational data cleaning and maximizes the speed change
likelihood to clean. It exhibits a relatively high sensitivity in detecting slight deviations.
Besides, some prevalent time series anomaly detection methods can also be extended to data

cleaning tasks. For instance, NumentaHTM [2] and FFT [34] can directly use the forecasting or
reconstruction series to clean, while GrammarViz [38] or Sub-LOF [6] can refer to the mined
grammar rules or nearest clean neighbors used for anomaly detection to clean.

However, existing cleaning algorithms have certain flaws. Let us start with a motivating example.
Example 1. Figure 1 is California’s hourly energy consumption data, zoomed in from the whole

series’ shaded part. A large spike dirty point at time 317, a consecutive error with two dirty points at
times 328-329, and two small dirty points at times 333 and 338 are present marked by dashed lines.

1) From the dirty data identification perspective, most methods make omissions or mistakes. SCREEN
fails to detect small dirty points at times 333 and 338 since they do not violate the speed constraints,
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while SpeedChange struggles to solve the large spike at time 317 due to its assumption of error ranges.
Besides, for consecutive dirty points at times 328-329, they can at most identify and clean one of them
due to the inherent limitations in their solutions. For Sub-LOF, it nearly regards all the shown data
points as dirty because it uses sliding windows, not a single point, for anomaly detection. This makes a
series of initially clean points adjacent to dirty points misidentified.
2) From the cleaning decision perspective, most methods deviate a lot from the truth. SCREEN can

merely change the dirty slump at time 317 just right to meet the speed constraint, which is still non-
compliant with the actual upward trend. Another case occurs at time 338, where SpeedChange detects
the dirt but adjusts its adjacent points to align with it. For NumentaHTM, the imprecise forecasting
series makes the cleaning results at times 317 and 328-329 far from the truth, which can be attributed
to the dirty data mixed into the data for model fitting.

3) Using perplexity, our method Akane can sensitively find the incongruent places with the context
and identify them as dirty data, like the dirty points at times 317, 328-329, 333, and 338. Besides, the
cleaning decisions also consider the proper contexts, and the statistics can separate clean and dirty data
to avoid confusion, which can derive the decisions close to the truth combined with linear regressions.
Actually, existing time series data cleaning algorithms make only limited use of time series

information during the cleaning process. Indeed, we notice that real-world time series data, whether
exhibiting seasonality or not, often contain recurrent patterns. Some typical examples include
weather data [23], daily CO2 intensity data [22], and GPS data [22]. This property finds application
in numerous time series analysis tasks, such as anomaly detection [15], classification [17] , and
forecasting [24]. Back to time series data cleaning, proper and satisfactory utilization of the recurrent
patterns in time series can also be crucial. For instance, the energy consumption changes in the
evening and midnight are evidently different recurrent patterns. It is usual to observe a significant
rise in the evening, but such an increase occurring at midnight is nearly unheard of and definitely
dirty. Unfortunately, existing algorithms struggle to distinguish between these two cases because
the increase at midnight seems reasonable from a global perspective, leading to overlooking dirty
points. By leveraging and analyzing the inherent recurrent patterns in the time series, we can
clearly identify this contextually incongruent increase at midnight and make informed cleaning
decisions using the regular midnight recurrent patterns.

However, implementing this idea poses significant challenges, primarily centered on using these
recurrent patterns to determine which points belong to the dirty data and what their original values
should be. Furthermore, it is also essential to strictly adhere to the minimum change principle
throughout the whole process. In this paper, we propose a novel, statistics-based time series data
cleaning algorithm that effectively uses the property of recurrent patterns.

Our intuition is that time series data exhibiting several recurrent patterns possess some similari-
ties with textual data, as these recurrent patterns can be analogized to fixed word combinations.
Subsequently, we introduce the concept of perplexity from Natural Language Processing (NLP)
into time series analysis as the means to evaluate time series data quality. Comparable to textual
errors, the presence of dirty data lowers the time series probability, thereby increasing its perplexity.
Conversely, cleaning dirty data, which utilizes available statistics collected from the series itself,
can be interpreted as an endeavor to reduce the time series perplexity within the given budget.

After formalizing the cleaning problem, we develop a four-phase framework to tackle the problem
of perplexity computation and optimization for time series, given that the data points often exist
within a continuous value space, in contrast to textual data. Besides the framework and selection
strategies of concrete methods and parameters, we also mitigate concerns related to the potential
adverse impact of dirty data on recurrent patterns and introduce an automatic yet highly effective
budget selection strategy based on estimation, thus guaranteeing its feasibility. This rationale stems
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from the observation that the presence of dirty data can impede our ability to analyze recurrent
patterns, and an improper cleaning budget can readily lead to either under or over-cleaning,
thereby undermining our framework. Finally, we make advanced solutions to the framework to
improve generalization capability. We introduce homomorphic pattern aggregation to generalize the
probability calculation phase and present a greedy-based heuristic algorithm to save costs. Notably,
patterns within time series data may sometimes exhibit similar behaviors while differing vastly
in values. Inaccurate treatment of such patterns significantly impairs the method’s applicability.
Moreover, attaining the global optimum demands substantial time and space resources. These
improvements make the framework more generic in both applicability and resource usage.

We summarize our major contributions in this paper as follows:
• We formalize the problem of cleaning time series data with recurrent patterns and introduce a
comprehensive four-phase algorithmic framework, including concrete method and parameter
selection strategies, for calculating and optimizing the perplexity within time series data.
• We mitigate the concerns about the adverse impact of the dirty data and devise an automatic
budget selection strategy relying on estimating the gain derived from a typical cleaning case
to ensure the framework’s feasibility.
• We make advanced solutions to the framework, including a new probability calculation
method based on homomorphic pattern aggregation to improve the applicability and a
greedy-based heuristic algorithm for optimization to reduce resource utilization, making the
framework more generic.
• We compare with 11 baselines on 12 real-world datasets, including 6 datasets with real dirty
data, to prove the effectiveness of our works. In addition, we analyze each parameter’s impact
on our framework in detail. These also validate the method and parameter selection strategies.

2 PROBLEM STATEMENT
2.1 Preliminaries
2.1.1 Time Series. A time series is a sequence of data points ordered by time that can be denoted
as the form 𝑋 = 𝑥 [1], 𝑥 [2], · · · , 𝑥 [𝑛], where each 𝑥 [𝑖] represents the value of the 𝑖-th data point
with a corresponding timestamp 𝑡 [𝑖], and 𝑛 = |𝑋 | is the length of the time series. For brevity, we
use 𝑥𝑖 and 𝑡𝑖 to stand for 𝑥 [𝑖] and 𝑡 [𝑖].
A subsequence 𝑥𝑖 , 𝑥𝑖+1, · · · , 𝑥 𝑗 is part of the whole time series 𝑋 that can be abbreviated to 𝑥𝑖:𝑗 .

We use 𝜇𝑋 and 𝜎𝑋 as the symbols of the mean value and standard deviation of 𝑋 respectively. Thus
in the normalized time series of 𝑋 , denoted as 𝑋 , 𝑥𝑖 = (𝑥𝑖 − 𝜇𝑋 )/𝜎𝑋 .

Given a sorted list of numbers 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 = 𝛽1, 𝛽2, · · · , 𝛽𝑟−1, we can transform the value range
from continuous numerical values to a finite set𝑊𝑠 = {𝑤1,𝑤2, ...,𝑤𝑟 } with 𝑟 discrete symbols.
Suppose 𝛽0 = min𝑥𝑘 ∈𝑋 𝑥𝑘 = 𝑋𝑚𝑖𝑛 , 𝛽𝑟 = max𝑥𝑘 ∈𝑋 𝑥𝑘 = 𝑋𝑚𝑎𝑥 to be two hypothetical breakpoints,
then 𝑥𝑖 can be symbolized as 𝑥𝑤

𝑖
= 𝑤𝑎 if 𝑥𝑖 ∈ [𝛽𝑎−1, 𝛽𝑎], and 𝑋𝑤 denotes the symbolized series.

2.1.2 Perplexity and Likelihood. In information theory, perplexity is a metric that gauges the
predictive power of a probability distribution or model on a specific sample. It has been extended to
multiple fields [9, 28]. Here, we borrow the definition of perplexity from the NLP field and redefine
it in the context of time series. The perplexity of time series 𝑋 with a chosen symbolized form 𝑋𝑤 is

𝑃𝑃 (𝑋 ) = 𝑃𝑃 (𝑋𝑤) = 𝑛
√︁

1/𝑃 (𝑋𝑤)
𝑃 (𝑋𝑤) = 𝑃 (𝑥𝑤1 𝑥𝑤2 · · · 𝑥𝑤𝑛 ) = 𝑃 (𝑥𝑤1 )𝑃 (𝑥𝑤2 |𝑥𝑤1 ) · · · 𝑃 (𝑥𝑤𝑛 |𝑥𝑤1:𝑛−1)

where 𝑃 (𝑋𝑤) is the occurrence probability of𝑋𝑤 and𝑛 is the length of𝑋 . The probability calculation
will be explained in Section 3.3.1.
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Owing to the continuous value range of the original time series, direct calculation of its occurrence
probability is not feasible. Therefore, we employ the corresponding symbolized time series instead.
It is evident that different symbolization strategies applied to a specific time series will yield distinct
perplexity values. Hence, before utilizing perplexity for calculation and optimization, it is essential
to predetermine a consistent symbolization strategy.
Since the occurrence probability will become extremely small after cumulative multiplication,

we use likelihood as a replacement for calculation. The likelihood 𝐿(𝑋 ) of time series 𝑋 is
𝐿(𝑋 ) = 𝐿(𝑋𝑤) = log 𝑃 (𝑋𝑤) = log 𝑃 (𝑥𝑤1 ) + log 𝑃 (𝑥𝑤2 |𝑥𝑤1 ) + · · · + log 𝑃 (𝑥𝑤𝑛 |𝑥𝑤1:𝑛−1)

By maximizing the time series’ likelihood, we can achieve its minimum perplexity conveniently.

2.2 Problem Definition
Regarding time series data cleaning, our intuition suggests that it shares some similarities with the
grammar correction task in NLP since recurrent patterns within time series data can be analogized
to fixed word combinations in textual data. Dirty points can disrupt part of these patterns, leading
to increased perplexity for the whole series. Hence, the cleaning problem can be defined as finding
a cleaned time series 𝑋 ′ with lower perplexity compared to the original time series 𝑋 .

Furthermore, in data cleaning tasks, we often adhere to the minimum change principle [5], which
favors a cleaned time series 𝑋 ′ close to 𝑋 . This principle can effectively prevent over-cleaning
and yield the most probable result. Existing time series data cleaning works [41, 50, 51] follow the
distance-minimal measure, in which the cleaning cost from 𝑋 to 𝑋 ′ is Δ𝑑 (𝑋,𝑋 ′) =

∑𝑛
𝑖=1 |𝑥 ′𝑖 − 𝑥𝑖 |.

Nevertheless, recent research [42] shows that the cardinality-minimal measure is more precise and
meaningful in this task. So our works consider the cleaning cost from 𝑋 to 𝑋 ′ as follows:

Δ(𝑋,𝑋 ′) = ∥{𝑥𝑖 | 𝑥𝑖 ≠ 𝑥 ′𝑖 , 1 ≤ 𝑖 ≤ 𝑛}∥
and for symbolized series, the cost is similar as it measures the total count of different symbols.

Since minimizing perplexity equals maximizing likelihood, we describe our cleaning problem as
Problem1.Given a time series𝑋 of length𝑛, a sorted list of numbers𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 = 𝛽1, 𝛽2, · · · , 𝛽𝑟−1

for symbolization, and a cleaning budget 𝛿 , the cleaning problem is to find a cleaned time series𝑋 ′ that
satisfies Δ(𝑋,𝑋 ′) ≤ 𝛿 and the likelihood 𝐿(𝑋 ′) under the given symbolization strategy is maximized.
Clearly, a proper budget 𝛿 is vital to avoid under or over-cleaning. So, we must establish the

right 𝛿 , as discussed later in Section 3.4.2.

3 ALGORITHMIC FRAMEWORK
To address the cleaning problem, we devise an effective four-phase algorithmic framework. We
first overview it and then present a step-by-step explanation of each in this section.

3.1 Framework Overview
Figure 2 delineates the four phases of the framework: time series symbolization, probability cal-
culation, likelihood optimization, and time series reconstruction. The time series symbolization
converts each continuous numerical data point into a symbol of a finite set, facilitating the proper
capture of recurrent patterns and enabling subsequent probability calculations. The probability
calculation phase specifies the method for determining the probability of the symbolized time
series based on statistics, essential for further calculations on likelihood. Likelihood optimization
employs a recursive algorithm rooted in dynamic programming to maximize likelihood, through
which a cleaned symbolized time series is obtained via retracement. The symbols within it are then
transformed back to numerical values in the time series reconstruction phase, yielding the final
cleaning result. This whole framework aims to solve Problem 1, and we use Akane to denote it.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 121. Publication date: June 2024.



121:6 Xiaoyu Han et al.

Phase One: 
Symbolization

Phase Four: 
Reconstruction

Phase Two: Probability Calculation

Phase Three: Likelihood Optimization

Input

st
at
is
tic
s

Output

Fig. 2. Algorithmic framework overview

3.2 Time Series Symbolization
A suitable symbolization strategy must strike a balance. Inadequate symbolization sacrifices infor-
mation and misses patterns, while excessive symbolization raises computational complexity and
captures insignificant patterns, diminishing algorithm effectiveness.

One commonly used strategy is the SAX-Based [32] symbolization strategy. However, it primarily
concentrates on the sequence matching task and is not well-suited for ours since it assumes that
the normalized time series follows a Gaussian distribution. Thus, its breakpoints are designed to
make the area under a 𝑁 (0, 1) Gaussian curve between each pair of neighbor breakpoints equal.
However, time series data cleaning usually does not satisfy this premise.

We notice that symbolization is similar to the quantization process in analog signal digitization. In
our task, a simple strategy is a uniform symbolization, which is versatile for almost any situation. To
transform the value range from continuous numerical values to a finite set with cardinality 𝑟 in time
series𝑋 , we calculate the distance 𝑑 between each two adjacent breakpoints by 𝑑 = (𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛)/𝑟
and let the breakpoint 𝛽𝑎 = 𝑋𝑚𝑖𝑛+𝑎∗𝑑 . Practically, data points in time series with recurrent patterns
are usually non-uniformly distributed due to their akin real meanings. This is evident in Figure 1,
where evening hours on weekdays consistently show a peak in energy consumption as people head
home from work. Time series symbolization can indeed assign real meanings to data points. Hence,
we draw inspiration from the optimal Lloyd-Max quantizer for a non-uniform quantization and
use Lloyd’s K-Means algorithm to symbolize. Through it, we can use prior distribution knowledge
hidden in the time series, thus facilitating a more effective symbolization process.

The symbolization strategy to use can be decided based on the data property. For data exhibiting
specific distribution characteristics, such as stable real-life data, K-Means better captures the
inherent real-world meanings. Uniform symbolization is a foolproof choice when faced with
uncertainty or unavailability regarding the data characteristics. To enhance cleaning effectiveness,
it is often combined with pattern aggregation, as introduced in Section 4.1.

The number of clusters in K-Means, namely 𝑟 , can be automatically determined by choosing the
value corresponding to the minimum Davies-Bouldin Index (DBI), which is used to evaluate the
clustering quality. In uniform symbolization, a too-small 𝑟 will make it hard to capture pattern infor-
mation, while a too-large one will result in the mistaken inclusion of some subtle yet insignificant
changes as recurrent patterns. Here, we denote the mean of absolute speeds as ¯|𝑣 | in the time series
𝑋 , where ¯|𝑣 | = ∑𝑛−1

𝑖=1 |𝑣𝑖 |/(𝑛 − 1) and 𝑣𝑖 = 𝑥𝑖+1 − 𝑥𝑖 . To capture the changes after symbolization, a
reasonable choice is to set the distance 𝑑 around the ¯|𝑣 |. In a loose scenario, we can let 𝑑 ≈ 2 ¯|𝑣 | to
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leave room for a subtle change, representing that usually, only two or more consecutive decreases
or increases can be considered a change in real meaning. While in a strict one, we can let ¯|𝑣 | ≈ 2𝑑 to
ensure an indisputable real meaning change hard to be aggregated. In this way, a possible 𝑟 can be
obtained from the range between (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)/(2 ∗ ¯|𝑣 |) and 2 ∗ (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)/ ¯|𝑣 |. Experiments
in Section 5.3 show that nearly any value within it can lead to a decent cleaning result.

3.3 Probability Calculation
3.3.1 Concrete Method. To calculate the likelihood, we must clarify how to calculate the probability.

Though straight, the simple assumption that the occurrence probability of a symbol is influenced
by all its preceding symbols introduces considerable redundancy and results in probabilistic sparsity.
Hence, to capture inherent short-term dependencies and local patterns and reduce calculation
complexity, here we introduce the 𝑘-order Markov chain. That is, the occurrence probability of a
symbol in a time series can be regarded as being determined solely by the last 𝑘 symbols, then

𝑃 (𝑥𝑤𝑖 |𝑥𝑤1:𝑖−1) = 𝑃 (𝑥𝑤𝑖 |𝑥𝑤𝑖−𝑘 :𝑖−1)
The probability values can be computed using statistical information gathered from the original

time series. Besides, we apply additive smoothing to tackle zero probabilities, that is
𝑃 (𝑥𝑤𝑖 |𝑥𝑤𝑖−𝑘 :𝑖−1) =

(
𝐶
(
𝑥𝑤
𝑖−𝑘 :𝑖

)
+ 1

)
/
(
𝐶
(
𝑥𝑤
𝑖−𝑘 :𝑖−1

)
+ 𝑟

)
where 𝐶

(
𝑥𝑤
𝑖:𝑗

)
stands for the frequency of subsequence 𝑥𝑤

𝑖:𝑗 in symbolized time series 𝑋𝑤 and 𝑟 is
the number of total available symbols. For simplicity, we can directly call 𝑥𝑤

𝑖−𝑘 :𝑖 a pattern here.
While a larger 𝑘 may capture diverse patterns, it is unsuitable for our task because it makes dirty

data more likely to exist in the 𝑘 + 1 points used for calculation, which still results in probabilistic
sparsity. Besides, it will also incur great time complexity. In fact, a direct choice of 𝑘 = 2 or 3 is
sufficiently ideal for us, and it has been adopted as a common solution for time series in previous
work [10]. This has also been confirmed in our experiments in Section 5.3.2.

Example 2 (Time series symbolization and probability calculation). For a dirty time series
𝑋 = {13, 6, 0, 12, 7, 1, 14, 7, 0, 20, 8, 14, 12, 6, 2, 11} with timestamps from 1 to 16, in which dirty points
20 and 14 occur at timestamps 10 and 12, whose ground truth are 14 and 3, we can first calculate
the Davies-Bouldin index and obtain the most proper cluster number 4. Then we use K-Means to
cluster it and get the centroids {𝐶1 = 0.75,𝐶2 = 6.8,𝐶3 = 12.67,𝐶4 = 20}, along with the breakpoints
{𝛽1 = 3.78, 𝛽2 = 9.73, 𝛽3 = 16.33}. Through the breakpoints, we symbolize the time series to 𝑋𝑤 =

{𝑐, 𝑏, 𝑎, 𝑐, 𝑏, 𝑎, 𝑐, 𝑏, 𝑎, 𝑑, 𝑏, 𝑐, 𝑐, 𝑏, 𝑎, 𝑐} (here we use the alphabet). After fixing such a symbolization
strategy, we can take 2 as the Markov chain order and calculate the probability of X as follows:

𝑃 (𝑋 ) = 𝑃 (𝑐) ∗ 𝑃 (𝑏 |𝑐) ∗ 𝑃 (𝑎 |𝑐𝑏) ∗ · · · ∗ 𝑃 (𝑎 |𝑐𝑏) ∗ 𝑃 (𝑐 |𝑏𝑎)

=
6 + 1
16 + 4 ∗

4 + 1
6 + 4 ∗

4 + 1
4 + 4 ∗ · · · ∗

4 + 1
4 + 4 ∗

3 + 1
4 + 4

And we can get the likelihood 𝐿(𝑋 ) by

𝐿(𝑋 ) = log 7
20 + log 5

10 + log 5
8 + · · · + log 5

8 + log 4
8 ≈ −12.45

We consistently use the unchanged statistics obtained from the original symbolized time series
to ensure fairness in calculations.

3.3.2 Impact of Dirty Data. Given that we introduce the Markov chain into probability calculation,
which makes the patterns analyzed much shorter, we must further guarantee that the recurrent
patterns still exist in large quantities and appear more frequently than dirty patterns in the dirty
time series. Otherwise, calculating probability in this way does not make sense.
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Assuming that an infallible recurrent pattern of length 𝑘 + 1 has occurred 𝑚 times, and the
probability of a symbol being erroneously changed to one of the other 𝑟 − 1 symbols is cumulative
𝜏 = 𝛿/𝑛, which means each of them shares 𝜏/(𝑟 − 1). We use 𝑘 + 1 as the length because 𝑘 is the
Markov chain order, and these 𝑘 points, along with the subsequent one point, affect one of the
probability calculations. Regardless of the transformations from other patterns to the given one, it
is clear that this pattern will occur𝑚 ∗ (1 − 𝜏)𝑘+1 times if introducing dirty points, which is usually
sufficient for a recurrent pattern used for cleaning when 𝑘 and 𝜏 is not too large.
However, with a large𝑚, dirty data could also turn into fictitious recurrent patterns. It is not

bad, as the cleaning process toward the truth is carried out budget by budget when multiple dirty
data points are within the pattern. We only need to ensure that the occurrence times of the dirty
patterns do not closely match or exceed the corresponding clean patterns, or they will impede data
cleaning by preventing the dirty data from being converted to clean data and tainting the clean
one. When introducing a specific dirty point at a particular position into the pattern above, the
occurrence times of the dirty pattern is𝑚 ∗ (1 − 𝜏)𝑘 ∗ (𝜏/(𝑟 − 1)). Thus, if this happens, it satisfies

𝑚 ∗ (1 − 𝜏)𝑘 ∗ (𝜏/(𝑟 − 1)) ≥ 𝑚 ∗ (1 − 𝜏)𝑘+1 ⇒ 𝜏 ≥ 1 − 1/𝑟

This is obviously impractical. In the simplest case where 𝑟 = 2, the dirty rate 𝜏 must surpass
0.5, a condition unattainable in a typical cleaning scenario [11, 12, 35, 43] because discarding the
data is a more judicious choice. This conclusion also holds even in an extreme scenario where the
probability of changing to a specific symbol is 𝜏 . Hence, the adverse impact of dirty data is limited.

3.4 Likelihood Optimization
3.4.1 Optimization Solution. Problem 1 is clearly an optimization problem reminiscent of the
knapsack problem. Hence, we employ a pseudo-polynomial time algorithm based on Dynamic
Programming (DP) to address it. It aims to find the symbolized time series with maximum likelihood.
Consider 𝑥 ′𝑤1:𝑖 to be a subsequence of the cleaned symbolized time series 𝑋 ′𝑤 with the last 𝑘

points 𝑥 ′𝑤
𝑖−𝑘+1, · · · 𝑥

′𝑤
𝑖
, and the cleaning cost to be Δ(𝑥 ′𝑤1:𝑖 , 𝑥

𝑤
1:𝑖 ) = 𝑐𝑖 , we can calculate the maximum

likelihood Λ
(
𝑖, 𝑐𝑖 , 𝑥

′𝑤
𝑖−𝑘+1:𝑖

)
of 𝑥 ′𝑤1:𝑖 with the recurrence equation

Λ
(
𝑖, 𝑐𝑖 , 𝑥

′𝑤
𝑖−𝑘+1:𝑖

)
= max

𝑥 ′𝑤
𝑖−𝑘 ∈𝑊𝑠

[
Λ
(
𝑖 − 1, 𝑐𝑖−1, 𝑥

′𝑤
𝑖−𝑘 :𝑖−1

)
+ log 𝑃

(
𝑥 ′𝑤𝑖 |𝑥 ′𝑤𝑖−𝑘 :𝑖−1

) ]
where 𝑐𝑖−1 = 𝑐𝑖 − 1 if 𝑥 ′𝑤

𝑖
≠ 𝑥𝑤

𝑖
, otherwise 𝑐𝑖−1 = 𝑐𝑖 .

Initially, for 𝑖 = 𝑘 and ∀𝑥 ′𝑤1 · · · , 𝑥 ′𝑤𝑘 ∈𝑊𝑠 , if 𝑐𝑘 ≥ Δ(𝑥 ′𝑤1:𝑘 , 𝑥
𝑤
1:𝑘 ):

Λ
(
𝑘, 𝑐𝑘 , 𝑥

′𝑤
1:𝑘
)
= log 𝑃 (𝑥 ′𝑤1 ) + · · · + log 𝑃 (𝑥 ′𝑤

𝑘
|𝑥 ′𝑤1:𝑘−1)

else if 𝑐𝑘 < Δ(𝑥 ′𝑤1:𝑘 , 𝑥
𝑤
1:𝑘 ), we have it to be −∞.

Through the above equations, we can obtain the maximum likelihood of the budget-allowed
cleaned time series 𝑋 ′ by calculating max

𝑥 ′𝑤
𝑛−𝑘+1:𝑛

Λ
(
𝑛, 𝛿, 𝑥 ′𝑤

𝑛−𝑘+1:𝑛

)
where 𝛿 is the given budget.

Algorithm 1 shows this optimization process. A recursive function recurDP is used in Lines 4 and
8 to implement the DP process with various loops, which receives the whole matrix Λ as input. In
Line 5, budgetSelect is used to select the proper budget, as illustrated later in Section 3.4.2.

We can easily get the optimal cleaning result by retracing the intermediate calculations leading
to the maximum likelihood, and the detailed approach is omitted here for simplicity.
Since only part of Λ is accessed during tracing, it incurs fewer time costs than Algorithm 1.

Besides, the budget 𝛿 is considered to be proportional to 𝑛. Hence, the overall time complexity for
getting the optimal cleaned result is 𝑂 (𝑟𝑘+1𝑘𝑛2), where 𝑟 = |𝑊𝑠 |. Moreover, the space complexity
amounts to 𝑂 (𝑟𝑘𝑛2) primarily for storing Λ.
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Algorithm 1:Maximum likelihood optimization
Input: symbolized time series 𝑋𝑤 with length 𝑛 and Markov chain order 𝑘
Output: maximum likelihood of the optimal result within the given budget 𝛿

1 Initialize Λ(𝑘, 𝑐𝑘 , 𝑥 ′𝑤1:𝑘 ) as mentioned above and let 𝛿 ← 0.
2 for 𝑐𝑖 ← 0 to 𝑛 do
3 for 𝑖 ← 𝑘 + 1 to 𝑛 do
4 recurDP(𝑖, 0, 𝑐𝑖 , 𝑘, 𝑘,Λ)
5 if budgetSelect(Λ, 𝑐𝑖 , 𝑛, |𝑊𝑠 |, 𝑘) = True then
6 𝛿 ← 𝑐𝑖 , Break
7 return max

𝑥 ′𝑤
𝑛−𝑘+1:𝑛

Λ
(
𝑛, 𝛿, 𝑥 ′𝑤

𝑛−𝑘+1:𝑛

)
8 Function recurDP(𝑖, 𝑐𝑖−1, 𝑐𝑖 , 𝑐𝑢𝑟_𝑘, 𝑘,Λ):
9 if 𝑐𝑢𝑟_𝑘 = 𝑘 then
10 foreach 𝑥 ′𝑤

𝑖
∈𝑊𝑠 do

11 recurDP(𝑖, 𝑐𝑖 − Δ(𝑥 ′𝑤𝑖 , 𝑥𝑤
𝑖
), 𝑐𝑖 , 𝑐𝑢𝑟_𝑘 − 1, 𝑘,Λ)

12 else if 𝑐𝑢𝑟_𝑘 = 0 then
13 foreach 𝑥 ′𝑤

𝑖−𝑘 ∈𝑊𝑠 do
14 𝑙 ← Λ

(
𝑖 − 1, 𝑐𝑖−1, 𝑥

′𝑤
𝑖−𝑘 :𝑖−1

)
+ log 𝑃

(
𝑥 ′𝑤
𝑖
|𝑥 ′𝑤
𝑖−𝑘 :𝑖−1

)
15 if 𝑙 > Λ

(
𝑖, 𝑐𝑖 , 𝑥

′𝑤
𝑖−𝑘+1:𝑖

)
then

16 Λ
(
𝑖, 𝑐𝑖 , 𝑥

′𝑤
𝑖−𝑘+1:𝑖

)
← 𝑙

17 return
18 else
19 foreach 𝑥 ′𝑤

𝑖−(𝑘−𝑐𝑢𝑟_𝑘 ) ∈𝑊𝑠 do
20 recurDP(𝑖, 𝑐𝑖−1, 𝑐𝑖 , 𝑐𝑢𝑟_𝑘 − 1, 𝑘,Λ)

3.4.2 Automatic Budget Selection. Algorithm 1 highlights the significance of the budget, as it
plays a pivotal role in controlling the cleaning degree. To ensure the feasibility of the likelihood
optimization phase, we propose how to decide 𝛿 automatically to avoid troublesomemanual settings.

Our goal is to reduce perplexity, which equals elevating likelihood. The likelihood keeps growing
(perhaps eventually stabilizing) with the ascension of budget 𝛿 . However, a higher likelihood doesn’t
guarantee lower RMS Error (our primary metric of cleaning introduced in Section 5.1.3; lower is
better) as shown in Figure 3. As the budget increases from 0, the likelihood constantly rises, and
the RMS Error continuously falls. At a budget of 140, the RMS Error is minimum, after which it
begins to ascend steadily, but the likelihood still rises. This occurs due to over-cleaning.
In general, the likelihood growth rate, namely the likelihood increase per budget, slows down

with a higher budget since we prefer to clean data points that would elevate more likelihood first.
Figure 3 shows a small growth rate during over-cleaning, as most dirty points have already been
identified and corrected. This allows us to transform selecting a proper budget into determining a
growth rate threshold at which the likelihood increase should halt.

A straight way is to decide through observation or trial and error, but this can be troublesome in
practice. So, we propose an automatic but effective budget selection strategy. Our insight is that we
can estimate the likelihood increase of a common cleaning case and subsequently employ it as the
threshold. Let us examine a simple case where a point is deemed dirty while other points around it
remain clean. For instance, let 𝑥𝑤

𝑘+1 represent the dirty point with true value 𝑦𝑤
𝑘+1, and the other

points from 𝑥𝑤1 to 𝑥𝑤2𝑘+1 are clean. In this way, our cleaning aim is to change 𝑥𝑤
𝑘+1 to 𝑦

𝑤
𝑘+1.
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Fig. 3. Growth rate actuality, estimation, likelihood, and RMS Error of the cleaning result under budget 𝛿

We suppose that the infallible subsequence appears𝑚 times, and the definitions of 𝜏 and 𝑘 remain
the same as Section 3.3.2. For simplicity, we estimate the likelihood increase from 𝑃 (𝑥𝑤

𝑘+1 |𝑥
𝑤
1:𝑘 ) to

𝑃 (𝑦𝑤
𝑘+1 |𝑥

𝑤
1:𝑘 ) at first. When introducing dirty points, 𝑥𝑤1:𝑘 will appear𝑚 ∗ (1 − 𝜏)𝑘 times. 𝑥𝑤1:𝑘+1 will

appear𝑚 ∗ (1−𝜏)𝑘 ∗ (𝜏/(𝑟 − 1)) times. And 𝑥𝑤1:𝑘 , 𝑦
𝑤
𝑘+1 will appear𝑚 ∗ (1−𝜏)

𝑘+1 times. The estimated
likelihood increase 𝜔 for cleaning the dirty point 𝑥𝑤

𝑘+1 will be

𝜔 = log 𝑚(1 − 𝜏)𝑘+1 + 1
𝑚(1 − 𝜏)𝑘 + 𝑟

− log 𝑚(1 − 𝜏)𝑘 ∗ (𝜏/(𝑟 − 1)) + 1
𝑚(1 − 𝜏)𝑘 + 𝑟

= log 𝑚(1 − 𝜏)𝑘+1 + 1
𝑚(1 − 𝜏)𝑘 ∗ (𝜏/(𝑟 − 1)) + 1

(1)

Actually, 𝑥𝑤
𝑘+1 will affect at most 𝑘 +1 probability calculations. For the other calculations, the only

dirty point 𝑥𝑤
𝑘+1 is on the right-hand side of the conditional probability. We can use the same way

to estimate them, and the results are positive and close to 𝜔 when𝑚 is not great. To simplify our
analysis and provide the tolerance for the case that dirty points are located at both ends and other
complex cases, we can heuristically take 𝜔 as the threshold to solve this cleaning case. Obviously,
if the threshold is smaller than 𝜔 , we might mistakenly modify many initially clean cases.

Algorithm 2: budgetSelect(Λ, 𝛿 , 𝑛, 𝑟 , 𝑘)
Input: maximum likelihood matrix Λ, current budget 𝛿 , time series length 𝑛, number of

symbols 𝑟 , and Markov chain order 𝑘
Output: a boolean value indicating whether to stop cleaning

1 if 𝛿 ≥ 𝑘 then
2 𝜔 ← 0, 𝛼 ← 0
3 for 𝑐 ← 𝛿 − 𝑘 + 1 to 𝛿 do
4 𝜏 ← 𝑐

𝑛

5 𝜔 ← 𝜔 + log 5∗(1−𝜏 )𝑘+1+1
5∗(1−𝜏 )𝑘∗(𝜏/(𝑟−1) )+1

6 𝛼 ← 𝛼 +max
𝑥 ′𝑤
𝑛−𝑘+1:𝑛

Λ
(
𝑛, 𝑐, 𝑥 ′𝑤

𝑛−𝑘+1:𝑛

)
−max

𝑥 ′𝑤
𝑛−𝑘+1:𝑛

Λ
(
𝑛, 𝑐 − 1, 𝑥 ′𝑤

𝑛−𝑘+1:𝑛

)
7 if 𝜔 > 𝛼 then
8 return True
9 return False

When another error occurs in 𝑥𝑤1:𝑘 , the frequency used in the denominator of Equation (1) will
decrease to𝑚 ∗ (1 − 𝜏)𝑘−1 ∗ (𝜏/(𝑟 − 1)) and the numerators decrease similarly. We can estimate
the new likelihood increase 𝜔 ′ for cleaning the dirty point 𝑥𝑤

𝑘+1 and 𝜔
′ is obviously greater than 𝜔 .

Adding the hypothesized dirty point in 𝑥𝑤1:𝑘 and conducting the estimation similar to Equation 1 on
this hypothesized dirty point, the total likelihood increase exceeds 𝜔 ′ + 𝜔 > 2𝜔 when two dirty
points are in 𝑥𝑤1:2𝑘+1, which means the likelihood increase per point is still greater than 𝜔 . We can
extend the conclusion to more dirty points and still take 𝜔 as the threshold.
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Table 1. (a) Maximum likelihood 𝐿′
𝑀𝑎𝑥

of cleaned series 𝑋 ′ varying 𝛿 . (b) Detailed calculations of 𝛿 = 2

𝛿 𝐿′
𝑀𝑎𝑥

0 -12.45
1 -12.45
2 -10.95
3 -10.95
4 -10.95
· · · · · ·
· · · · · ·
· · · · · ·

(a)

i <𝑥 ′𝑤
𝑖−1:𝑖 , 𝐿′𝐴𝑐𝑐𝑢𝑚𝑙

> i <𝑥 ′𝑤
𝑖−1:𝑖 , 𝐿′𝐴𝑐𝑐𝑢𝑚𝑙

>
1 <□c,-1.05> 9 <ba,-6.23>
2 <cb,-1.74> 10 <ac,-6.93>
3 <ba,-2.21> 11 <cb,-7.77>
4 <ac,-2.91> 12 <ba,-8.24>
5 <cb,-3.75> 13 <ac,-8.94>
6 <ba,-4.22> 14 <cb,-9.78>
7 <ac,-4.92> 15 <ba,-10.25>
8 <cb,-5.76> 16 <ac,-10.95>

(b)

Practically, to ensure the premise of the recurrent pattern when calculating the threshold and
avoid considering some unnecessary pattern, we usually let𝑚 = 5 directly for convenience. Besides,
a too-large𝑚 may make us overlook the potential cleaning case for a pattern from multiple dirty
points to fewer dirty points. Moreover, since the dirty rate 𝜏 decided by budget 𝛿 is not known
beforehand, our objective is to chase a balance between the budget and the growth rate. When the
budget is low, the actual growth rate exceeds the theoretically calculated estimation a lot. We then
incrementally increase the budget until the actual growth rate closely and continuously matches
the theoretical lower bound. At this juncture, we halt the cleaning process and output the final
result. This juncture is depicted in the mark in Figure 3, and the chosen budget is highly close to the
optimum. To ensure a degree of robustness, the actual growth rate is determined using the interval
mean. Algorithm 2 shows the selection process. The experiments in Section 5.3.4 fully validate it.

Example 3 (Detailed calculations of likelihood optimization, Example 2 continued). After sym-
bolizing and specifying the probability calculation method, we can calculate on the series 𝑋𝑤 .

Table 1 (a) shows the maximum 𝐿(𝑋 ′), namely 𝐿′
𝑀𝑎𝑥

, as 𝛿 varies. Table 1 (b) exhibits the calculations
leading to the maximum likelihood when 𝛿 = 2. 𝐿′

𝐴𝑐𝑐𝑢𝑚𝑙
is the accumulated optimal likelihood till

the 𝑖-th points, and 𝑥 ′𝑤
𝑖−1:𝑖 is the 𝑖 − 1-th and 𝑖-th cleaned symbols. The likelihood remains constant

when 𝛿 = 1 because altering a single symbol cannot benefit. For instance, changing 𝑥𝑤10 from d to c can
increase 𝐿′

𝐴𝑐𝑐𝑢𝑚𝑙
till 𝑖 = 10 by 𝑃 (𝑐 |𝑏𝑎) − 𝑃 (𝑑 |𝑏𝑎) = 0.69, but the total likelihood decreases by 0.4.

As 𝛿 = 2, for 𝑖 = 𝑘 , the algorithmwill propose a potential change of 𝑥 ′𝑤
𝑘
, and calculate the 𝐿′

𝐴𝑐𝑐𝑢𝑚𝑙
till

𝑖 = 𝑘 using the accumulated likelihood of each possible 𝑥 ′𝑤
𝑘−2:𝑘−1 till 𝑖 = 𝑘 − 1 and 𝑃 (𝑥 ′𝑤

𝑘
|𝑥 ′𝑤
𝑘−2:𝑘−1). The

details of the optimum are recorded in Table 1 (b). By retracing based on the recorded cleaned symbols,
we can obtain the cleaning result of changing 𝑥𝑤10 to c and 𝑥

𝑤
12 to a. The region {· · · , 𝑏, 𝑎, 𝑐, 𝑏, 𝑎, 𝑐, 𝑏, · · · }

containing these two points can elevate the likelihood by 1.50, resulting in a total likelihood increase
from −12.45 to −10.95. At this moment, the𝜔 in Algorithm 2 takes 𝜏 = 1/16 and 𝜏 = 2/16 into account
and is 2.87, while the 𝛼 is 1.50 getting from 𝑐 = 𝛿 = 2. Then, Algorithm 2 chooses 𝛿 = 2 and stops the
calculation, which is indeed the truth given that the likelihood remains unchanged from 𝛿 = 2.

3.5 Time Series Reconstruction
After the preceding three phases, we achieve a cleaned symbolized time series with maximum
likelihood and minimum perplexity. Therefore, we finalize the cleaning process by reconstructing
the time series from the symbols back to the numerical values.
Due to multiple regions from symbolization, a straight strategy is to select the centroid value

within the corresponding region of a symbol. This is because points usually gather around the
centroids (e.g., in K-Means), leading to an anticipated lower RMS Error.
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However, this remains insufficient because it solely uses global information and neglects more
worthwhile local one. Hence, we design a more powerful Linear Regression (LR)-based strategy.

Our idea involves using LR models to fit patterns found within the cleaned data points. Based
on the surrounding initially clean data points and the fitted LR models, we can calculate the most
likely values for reconstruction. For a cleaned data point, we first select a pattern it belongs to for
fitting. To ensure adequate points for fitting and achieve better results, we choose the most frequent
pattern containing at least half of the true data points at the cleaned data point’s location. For all
identical patterns in the whole time series, we set the values of data points at the same position as
the cleaned data point in this pattern to be the model target and those corresponding to true data
points as the model input. Of course, the number of samples should surpass the parameters for
successful fitting. Then, we use these to fit the LR model and get the parameters. Finally, it is easy
to calculate the reconstruction result of a cleaned data point through the true data points around
it in the chosen pattern and the corresponding fitted model. If there are no suitable patterns or
enough initially clean data points for fitting, this method can select the centroid value as a fallback.
Example 4 (Time series reconstruction, Example 3 continued). After likelihood optimization

and retracement, we get a cleaned symbolized series 𝑋 ′𝑤 = {𝑐, 𝑏, 𝑎, 𝑐, 𝑏, 𝑎, 𝑐, 𝑏, 𝑎, 𝑐, 𝑏, 𝑎, 𝑐, 𝑏, 𝑎, 𝑐}, whose
likelihood increases from −12.45 to −10.95. If symbols remain unchanged, we keep them unchanged as
well. For those altered, here we use the cleaned symbol 𝑐 at timestamp 10 to illustrate the process.
Since the Markov chain order is 2 during our analysis, here we consider the patterns of length 3

containing timestamp 10 for reconstruction, which includes {𝑏, 𝑎, 𝑐}, {𝑎, 𝑐, 𝑏} and {𝑐, 𝑏, 𝑎}. We first
exclude pattern {𝑐, 𝑏, 𝑎} even though it appears most frequently in the time series because there exist 2
dirty points at timestamp 10-12. Fitting a LR model with a single input cannot guarantee accuracy. For
the rest of the patterns, {𝑏, 𝑎, 𝑐} appears 3 times while {𝑎, 𝑐, 𝑏} 2 times regardless of the dirty points. So
we choose {𝑏, 𝑎, 𝑐} for fitting given that it appears most frequently, and 3 times are sufficient to fit the
parameters we need. In the original time series, these 3 samples are {6, 0, 12},{7, 1, 14} and {6, 2, 11}.
So our task becomes fitting the linear model 𝑦 = 𝛾0 + 𝛾1𝑥1 + 𝛾2𝑥2 with model target y = [12, 14, 11]
and the model input x = [[6, 0], [7, 1], [6, 2]]. Through fitting we can get the parameters 𝛾0 = −3,
𝛾1 = 2.5 and 𝛾2 = −0.5, and for the pattern at timestamp 10, whose original value is {7, 0, 20}, we can
get the cleaning result of 20 by calculating −3 + 2.5 ∗ 7 − 0.5 ∗ 0 = 14.5, which is close to the truth 14
compared to the centroid 12.67.

We can use the same way to reconstruct the timestamp 12 and obtain the cleaning result 3.78, and it
is also better than 0.75. Finally, 𝑋 ′ = {13, 6, 0, 12, 7, 1, 14, 7, 0, 14.5, 8, 3.78, 12, 6, 2, 11} is the cleaned
time series, which lowers the RMS Error from 3.13 to 0.23.

Using the LR model makes sense because we usually have sufficient samples for fitting, and there
exists scarcely any dirty data in these samples after cleaning, which enhances the fitting accuracy.

4 ADVANCED SOLUTIONS
The algorithmic framework elucidated in Section 3 can achieve satisfactory cleaning results on most
occasions, primarily leveraging the recurrent patterns within univariate time series. Nevertheless,
some limitations still exist with regard to applicability and resource consumption. Hence, in this
section, we will make advanced solutions to the framework to make it more generic.

4.1 Homomorphic Pattern Aggregation
K-Means symbolization fails to fit specific cases, e.g., when a noticeable trend occurs as depicted in
Figure 4 recording monthly air passengers time series. Though the ways to change within a year
marked in Figure 4 behave similarly and can be the recurrent patterns, different base values due to
the yearly growth in the passenger number make their values vary a lot. This presents an issue for
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our probability calculation phase since such patterns will be counted separately. We refer to these
patterns as homomorphic patterns, and those behaving similarly belong to the same homomorphic
set. To handle more cleaning situations, here we propose advanced strategies for our framework.

Normalization

Fig. 4. Homomorphic patterns in the monthly air passengers time series

Uniform symbolization is a more practical approach when handling such uniformly distributed
data. In uniform symbolization, more symbols are often necessary to capture most of the patterns,
which makes a specific pattern typically manifest infrequently. We call this phenomenon pattern
sparsity, and it will impede the employment of recurrent patterns for time series data cleaning.
Hence, we introduce homomorphic pattern aggregation into probability calculation to diminish
the negative influence of pattern sparsity and capture the hidden homomorphic patterns.
Due to the remarkable similarity in the behaviors of different patterns, here we consider time

series normalization to eliminate the scale differences among them. It is suitable for solving certain
trends, and its effect is shown in Figure 4. Given that what we consider are symbolized time series,
we use the centroid value 𝑥𝑐𝑖 of the symbolized data point 𝑥𝑤

𝑖
for calculation. Besides, we use the

RMS Error between the normalized symbolized patterns to measure homomorphism. Suppose
𝑥𝑤
𝑝−𝑘 :𝑝 and 𝑥𝑤

𝑞−𝑘 :𝑞 to be two patterns with length 𝑘 + 1, then 𝑥𝑤
𝑝−𝑘 :𝑝 is homomorphic to 𝑥𝑤

𝑞−𝑘 :𝑞 if

𝐷𝑖𝑠𝑡 (𝑥𝑤
𝑝−𝑘 :𝑝 , 𝑥

𝑤
𝑞−𝑘 :𝑞) = 𝑅𝑀𝑆𝐸 (𝑥𝑐

𝑝−𝑘 :𝑝 , 𝑥
𝑐
𝑞−𝑘 :𝑞) ≤ 𝜖

where 𝜖 is the distance threshold. Any two patterns in the same set are mutually homomorphic.
When performing probability calculation for a specific pattern, we aggregate all the patterns

belonging to its corresponding homomorphic set for calculation. Hence, the core issue is how
to discover the homomorphic sets for aggregated calculation using all the fixed-length patterns
within the given time series. An ideal scenario is to minimize the number of sets, as this is more
likely to result in better aggregation effects and lower complexity of subsequent calculation. For
simplicity, we allow a pattern to exist in multiple homomorphic sets (but only a specific set is used
for calculation). The homomorphic sets discovery problem can be formalized as:
Problem 2. Given 𝑛 patterns with a fixed length 𝑚(𝑚 ≪ 𝑛) and a threshold 𝜖 , the discovery

problem involves identifying a list of homomorphic sets minimizing the total set number while covering
all the given 𝑛 patterns. Meanwhile, the distance between any two patterns within the same set is ≤ 𝜖 .

Problem 2 is NP-Hard. We can prove it by reducing the NP-Hard minimum clique partition (MCP)
problem in unit disk graphs (UDGs) [8, 14, 44] to it. Consider a UDG 𝐺 = (𝑉 , 𝐸) represented by a
set 𝑆 of 𝑛 points in the plane, where the 𝑛 vertices in 𝑉 correspond to the 𝑛 points, and an edge in
𝐸 exists between two vertices if and only if the distance between the two points is at most 1. We
can reduce the 𝑛 points to 𝑛 patterns, the plane to𝑚 = 2, the distance 1 to threshold 𝜖 = 1, and the
clique to the homomorphic set.

In this way, we propose a simple but effective way to predetermine all the homomorphic pattern
sets that are adequate for our task. Algorithm 3 illustrates our idea of establishing the sets. We need
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to scan the patterns in the original symbolized time series sequentially. For a pattern, we either
choose it as the base pattern to mark a homomorphic set, as shown in Lines 3-5 and Lines 10-12, or
add it into the set of the nearest base pattern between which the RMS Error is less than 𝜖

2 as shown
in Line 7-9, thus making the RMS Error between any two patterns within a set less than 𝜖 .

Algorithm 3: Heuristic construction of homomorphic sets
Input: symbolized series 𝑋𝑤 , Markov chain order 𝑘 , distance threshold 𝜖
Output: a dict D𝑏𝑎𝑠𝑒 with base patterns as keys and homomorphic sets as values, a dict

D𝑠𝑒𝑡 recording existing patterns and corresponding base patterns and a k-d tree T
recording all base patterns

1 Initial D𝑠𝑒𝑡 , D𝑏𝑎𝑠𝑒 and T
2 for 𝑖 ← 𝑘 + 1 to 𝑛 do
3 if D𝑏𝑎𝑠𝑒 is empty then
4 D𝑏𝑎𝑠𝑒 [𝑥𝑤𝑖−𝑘 :𝑖 ] ← 𝑥𝑤

𝑖−𝑘 :𝑖 , D𝑠𝑒𝑡 [𝑥𝑤𝑖−𝑘 :𝑖 ] ← {𝑥
𝑤
𝑖−𝑘 :𝑖 }

5 Add 𝑥𝑤
𝑖−𝑘 :𝑖 in T , Continue

6 Search 1-NN 𝑐𝑏𝑎𝑠𝑒 with RMS Error 𝑐𝑑𝑖𝑠𝑡 of 𝑥𝑤𝑖−𝑘 :𝑖 in T
7 if 𝑐𝑑𝑖𝑠𝑡 < 𝜖

2 then
8 D𝑏𝑎𝑠𝑒 [𝑥𝑤𝑖−𝑘 :𝑖 ] ← 𝑐𝑏𝑎𝑠𝑒 , Add 𝑥𝑤𝑖−𝑘 :𝑖 in D𝑠𝑒𝑡 [𝑐𝑏𝑎𝑠𝑒 ]
9 else
10 D𝑏𝑎𝑠𝑒 [𝑥𝑤𝑖−𝑘 :𝑖 ] ← 𝑥𝑤

𝑖−𝑘 :𝑖 , D𝑠𝑒𝑡 [𝑥𝑤𝑖−𝑘 :𝑖 ] ← {𝑥
𝑤
𝑖−𝑘 :𝑖 }

11 Add 𝑥𝑤
𝑖−𝑘 :𝑖 in T

12 return D𝑠𝑒𝑡 , D𝑏𝑎𝑠𝑒 , T

Sequentially searching the 1-NN base pattern requires the 𝑂 (𝑘𝑛) time. Here, we can use the k-d
tree to accelerate this process. The average 1-NN searching time can be reduced to 𝑂 (𝑘 log𝑛), and
the time complexity of the overall construction process is 𝑂 (𝑘𝑛 log𝑛).

After obtaining the homomorphic sets, we can calculate the pattern probability by searching its
1-NN in the k-d tree, checking the dictionary to find its corresponding set, and then aggregating all
the statistics. This incurs an average𝑂 (𝑘 log𝑛) time cost since the size of the k-d tree is proportional
to 𝑛, and the cardinality of each set is usually small, making the aggregation process neglectable.

For a pattern 𝑥 ′𝑤
𝑝𝑖−𝑘 :𝑝𝑖 in a set {𝑥 ′𝑤

𝑝1−𝑘 :𝑝1
, · · · , 𝑥 ′𝑤

𝑝𝑠−𝑘 :𝑝𝑠 } of cardinality 𝑠 , its occurrence probability is

𝑃 (𝑥 ′𝑤𝑝𝑖 |𝑥
′𝑤
𝑝𝑖−𝑘 :𝑝𝑖−1) =

∑𝑠
𝑗=1𝐶

(
𝑥 ′𝑤
𝑝 𝑗−𝑘 :𝑝 𝑗

)
+ 1∑𝑠

𝑗=1𝐶
(
𝑥 ′𝑤
𝑝 𝑗−𝑘 :𝑝 𝑗−1

)
+ 𝑟

When running the Algorithm 1, we only need to modify the probability calculation in Line 12,
and the time complexity will increase to 𝑂 (𝑟𝑘+1𝑘𝑛2 log𝑛), with space complexity unchanged.
A proper threshold 𝜖 is crucial for pattern aggregation. Neither do we want to overlook essen-

tially the same patterns nor aggregate dissimilar or slightly off dirty patterns. Fortunately, the
normalization and mean square operation significantly mitigate the impact of variations across
datasets, making it possible to use a fixed threshold 𝜖 . Experiments on 4 datasets, including 2
real-error ones, prove that a little threshold within 0.08, such as 0.02, can be a panacea.

4.2 Greedy-Based Heuristic Algorithm
Despite the effectiveness of our likelihood optimization phase, it incurs significant resource utiliza-
tion in both time and space due to the global optimization. These unaffordable costs undermine
our framework’s applicability, not to mention the handling of homomorphic patterns. To make the
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whole framework more preferable, we refer to a simple approximation strategy for the knapsack
problem, namely a greedy algorithm, and then design a heuristic algorithm to chase the likelihood
increase in the likelihood optimization phase.
This algorithm is straightforward: since the global optimization problem aims to maximize the

likelihood, we can greedily clean one point each time to achieve the maximum likelihood increase
until reaching the automatically selected budget. Given that one point is cleaned each time, we
need to focus on at most 𝑘 + 1 patterns of length 𝑘 + 1 that contain this point for likelihood increase.

Let𝑋 ′𝑤 be a current cleaned symbolized time series, initially𝑋 ′𝑤 = 𝑋𝑤 , and𝑋 ′′𝑤 be a symbolized
cleaned time series after further cleaning a point 𝑥 ′𝑤

𝑖
in 𝑋 ′𝑤 to 𝑥 ′′𝑤

𝑖
, while the other points are

unchanged, then the 𝑖 and 𝑥 ′′𝑤
𝑖

should be

arg max
𝑖,𝑥 ′′𝑤

𝑖

𝑖+𝑘∑︁
𝑗=𝑖

[
log 𝑃 (𝑥 ′′𝑤𝑗 |𝑥 ′′𝑤𝑗−𝑘 :𝑗−1) − log 𝑃 (𝑥 ′𝑤𝑗 |𝑥 ′𝑤𝑗−𝑘 :𝑗−1)

]
As to 𝑥 ′′𝑖 , its value is decided the same in Section 3.5.

The total number of cleaning candidates is 𝑛 ∗ 𝑟 , and for each, at most 𝑘 + 1 patterns need to be
calculated for likelihood increase. In fact, we can reuse some calculated likelihood increases because
only one data point has changed each time, and the data points involved in most of the calculations
remain the same. Specifically, after choosing a point to clean, at most 𝑟 ∗ (𝑘 +1) candidates should be
recalculated. So we can maintain a max-heap to store and reuse the likelihood increase information.
It stores the modified symbol with the greatest likelihood increase of each data point. We need
𝑂 (𝑟𝑘2𝑛) time for first-round calculations and 𝑂 (𝑛) for building max-heap. After cleaning a point,
it takes 𝑂 (𝑟𝑘3) time to calculate the changed scenarios and 𝑂 (𝑘 log𝑛) to update the max-heap.
With a max-heap, the time complexity of the heuristic algorithm is 𝑂 (𝑟𝑘3𝑛 + 𝑘𝑛 log𝑛), and the
space complexity is 𝑂 (𝑛) for max-heap. Considering homomorphic pattern aggregation, the time
complexity will increase to 𝑂 (𝑟𝑘3𝑛 log𝑛), with the space complexity 𝑂 (𝑘𝑛). These are affordable
since 𝑟 and 𝑘 are much smaller than 𝑛.
The greedy-based heuristic algorithm is prioritized when focusing on efficiency. It represents

a trade-off between precision and time complexity. It can be gradually extended to consider the
maximum likelihood increase from simultaneously cleaning two, three, or even more points until it
degenerates to global optimization.

5 EXPERIMENTS
In this section, we select three methods from our algorithmic framework to evaluate its overall per-
formance, namely Akane (K-Means symbolization + global optimization, no pattern aggregation),
AkaneH (K-Means symbolization + heuristic algorithm, no pattern aggregation), and AkaneH+
(uniform symbolization + heuristic algorithm, with pattern aggregation). We will introduce the
detailed settings, compare them with 11 baselines on 12 real-world datasets to check whether our
proposed methods are truly effective, and conduct thorough parametric analyses to find out how
parameters affect our methods. Besides, we want to confirm whether the proposed strategies of
method and parameter selection are valid. The relevant artifacts are provided in the GitHub 1.

5.1 Experimental Settings
5.1.1 Dataset. Table 2 shows the details of 12 real-world datasets used in our experiments. CA
and Romania are datasets varied from the raw data regarding data length and dirty rate, rendering
them well-suited for scalability evaluation. Since their raw data are both non-stationary, the CA
dataset is concatenated by the extracted stationary parts to make us have both a stationary and a
1https://github.com/HatsuneHan/Akane-sigmod24

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 121. Publication date: June 2024.



121:16 Xiaoyu Han et al.

Table 2. Details of 12 real-world datasets

Name Dirty Type Length Rate Source Notes
CA Synth 1K-10K 5-30% California ISO Energy

Romania Synth 1K-10K 5-30% Kaggle Energy
Product Synth 397 20% FRED Utilities
Retail Synth 377 20% FRED Trade

Passenger Synth 144 20% Kaggle Airline
Traffic Real 200 2% Dodgers [3, 26] Flow
ID_7c18 Real 1500 0.73% IOPS [36] KPI
ID_7698 Real 1K 0.2% IOPS [36] KPI
ID_a40b Real 10K 0.32% IOPS [36] KPI
MSL-T-5 Real 2218 0.23% NASA-MSL [25] Telemetry
SMAP-G-2 Real 7361 0.014% NASA-SMAP [25] Telemetry

Stock Synth 12824 10% SCREEN [41] Finance

non-stationary energy dataset for better evaluation, avoiding limitations resulting from a single
scenario. Moreover, the Product, Retail, Passenger, and Stock datasets are fixed in terms of length
and dirty rate. We take the datasets above as ground truths and inject synthetic dirty data into
them. We consider a single big dirty point (20%), a single small dirty point (60%), and consecutive
dirty points (20%), following the types of dirty data as well as injection methods summarized in
related works [41, 45, 50, 51], and adhering to a reasonable distribution.

The remaining 6 datasets are also fixed and have real dirty data, as they come from the prevalent
time series anomaly detection benchmarks [3, 25, 26, 36, 37], and their original forms consist of
data and binary is_anomaly labels. We regard the anomalies as dirty and invite the domain experts
to manually clean them, thus making them applicable to our cleaning task. It is noteworthy that
some sources, such as IOPS [36] and Dodgers [3, 26], are so large that we use the sliced fragments.

5.1.2 Baselines. We incorporate a total of 11 methods as our baselines. Five of them are estab-
lished data-cleaning algorithms, including EWMA [18], AR-Linear, AR-LSTM (AR algorithm using
different models), SCREEN [41] and SpeedChange [50]. Since explicit speed constraints may not
exist, we give SCREEN the ground truth to obtain them. The remaining six are extended from
prevalent unsupervised anomaly detection algorithms involving forecasting-based Torsk [20],
NumentaHTM [2], TripleES [1], reconstruction-based FFT [34], encoding-based GrammarViz [38]
and distance-based Sub-LOF [6]. For Torsk, NumentaHTM, TripleES, and FFT, we directly use the
forecasting/reconstruction results to clean. GrammarViz or Sub-LOF use the mined grammar rules
or relative density to neighbors for anomaly score calculation. Hence, we use the best match rule
or the nearest clean neighbor as the cleaning decisions. Since a point may be covered by multiple
rules or neighbors in different subsequences, we choose the one closest to the ground truth.

5.1.3 Criteria. Root Mean Square Error (RMS Error) is widely employed to evaluate the quality of
the time series data cleaning algorithms in many related works [41, 50, 51]. It measures the differ-
ences between truth and cleaned time series. Here, we choose it as the criteria in our experiments.
Let 𝑋 𝑡𝑟𝑢𝑡ℎ be the ground truth and 𝑋𝑐𝑙𝑒𝑎𝑛𝑒𝑑 be the cleaned time series, then it can be calculated by

𝑅𝑀𝑆𝐸 (𝑋 𝑡𝑟𝑢𝑡ℎ, 𝑋𝑐𝑙𝑒𝑎𝑛𝑒𝑑 ) =

√√
1
𝑛

𝑛∑︁
𝑖=1
(𝑥𝑡𝑟𝑢𝑡ℎ

𝑖
− 𝑥𝑐𝑙𝑒𝑎𝑛𝑒𝑑

𝑖
)2

where 𝑛 is the series length, and a low RMSE is desired. Here we use 𝑅𝑀𝑆𝐸𝑐𝑙𝑒𝑎𝑛𝑒𝑑 for abbreviation.
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Romania

CA

Fig. 5. Performances and time costs on variable CA and Romania datasets

5.2 Comparisons with Existing Methods
While conducting comparisons, our methods Akane, AkaneH, and AkaneH+ employ parameter
selection strategies as illustrated in Section 3, that is, minimum DBI for K-Means, a value in the
calculated range for uniform symbolization (for simplicity, 𝑟 = 25 for all datasets), budget selected by
Algorithm 2, and a small distance threshold within 0.08 (for simplicity, 𝜖 = 0.02 here for all datasets).
For baselines, we adhere to the strategies outlined in the origins, take the real meanings of different
parameters into account, and endeavor to optimize their performance to set the parameters.

5.2.1 Comparisons on Variable Datasets. Figure 5 summarizes the performances of cleaning meth-
ods and their time costs on the CA and Romania datasets while varying length and dirty rates.
EWMA performs well, especially at high dirty rates, as it can notably mitigate the adverse impact of
the dirty data points. However, it tends to alter many original clean data points, while our methods
strictly follow the minimum change principle and still excel in performance.
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The LSTM model, capable of processing more intricate information, usually surpasses the Linear
model in the AR algorithm. Nevertheless, AR algorithms demand more clean data for fitting to
obtain enhanced cleaning results. As the dirty rate increases, the fitted model becomes less precise,
but the impact of incorrect identifications might be diluted, rendering its performance erratic.

Similar things happenwith anomaly-detection-basedmethods. Regarding dirty data identification,
Sub-LOF, GrammarViz, and Torsk tend to assign identical and high anomaly scores for a window
containing dirty points, not a single dirty point, to distinguish anomalies (or dirty data). While this
is common in anomaly detection, it also stands for altering many initially clean data points in data
cleaning tasks. Besides, the dirty data will also reduce the detection models’ precision, especially in
NumentaHTM, TripleES, and FFT, worsening the cleaning decisions. These result in their inferiority,
not to mention violating the minimum change principle. FFT, TripleES, and GrammarViz exhibit
relatively strong performance among them. The efficacy of FFT is attributed to its cleaning process,
which uses the reconstruction result that deliberately discards insignificant information. In addition,
TripleES benefits from the concept of smoothing during the identification process, assigning a
notably high score to the exact dirty data for precise identification, and it can broadly weaken
the impact of dirty data like what EWMA does. Moreover, GrammarViz can summarize relatively
effective rules from the data to clean, but its performance sometimes slumps when the data is short,
or the dirty rate is high despite the usage of ground truth. Our methods do not confound dirty data
points with the truth, and the symbolization phase enables us to encapsulate primary information
without becoming entrenched in specific values, thus having superior performance.

SCREEN’s performance is relatively stable, albeit not as optimal as ours. It is crucial to note that
SCREEN employs the ground truth, implying that the reported performance is theoretically optimal.
Regrettably, the speed constraint limits its ability to identify dirty data within the constraint and
clean them close to the truth, making it inferior to our methods.
Though based on statistics, SpeedChange performs poorly due to inherent method limitations

and required parameters. It assumes an error range for dirty data, but determining this parameter
is challenging when dealing with various types of dirty data, leading to subpar results. Besides,
speed change information alone is insufficient to obtain cleaning results close to the truth. Our
statistics-based methods do not make such a strong assumption about the dirty points, and they
leverage more powerful information about recurrent patterns, facilitating superior cleaning results.
In Figure 5, Akane, AkaneH, and AkaneH+ exhibit notable performances. Akane and AkaneH

usually perform better because the specific distribution characteristics present in real-world energy
consumption data render K-Means symbolization a more proper choice. On the CA dataset, they
demonstrate stable performance owing to sufficient recurrent patterns. Akane outperforms the
others due to global optimization, with AkaneH closely following it. Though AkaneH+ occasionally
misidentifies slightly off dirty patterns as clean and incorporates redundant information due to
homomorphic pattern aggregation, which somewhat hampers its performance, it still surpasses the
baselines. Remarkably, at a high dirty rate, AkaneH+’s performance approaches that of AkaneH
due to the more accurate budget selection, as shown in Section 5.3.4.
On the Romania dataset, AkaneH+ performs the best on a short series having a singular trend.

As the series lengthens and pattern occurrences increase, both Akane and AkaneH improve. The
fluctuating trend within the non-stationary Romania dataset causes performance variations in
Akane and AkaneH, and reduces the performance gaps resulting from symbolization strategies
between them with AkaneH+. This trend, along with global optimization, sometimes makes Akane
over-clean, mistakenly changing certain consecutive clean data points of lower probability to higher
probability patterns, leading to a slight performance decline. In some cases, it may even perform
worse than AkaneH. However, all three methods consistently outperform the baselines.
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Upon varying dirty rates, our methods excel at low rates, as most patterns remain clean, making
it easier to identify and rectify dirty points. As the dirty rate rises, there is a slight degradation in
the performance, which is attributed to the excessive dirty points that impede the pattern statistics
and adversely affect the reconstruction phase. Given that the dirty rate will not be too high in
practical scenarios [11, 12, 35, 43] and our methods still retain commendable cleaning capabilities
at that time, this is not of significant concern.

Regarding time costs, EWMA, SCREEN, and AR-Linear run faster due to their single sequential
scans of the time series, hardly leveraging statistics from it. AR-LSTM is slower because of its
iterative model refinement. Among ours, Akane outperforms SpeedChange with better cleaning
results. We should notice that distinct auto-selected symbolization numbers of K-Means may make
the time costs oscillate. By adopting heuristics, AkaneH and AkaneH+ greatly cut time costs.
They balance performance and efficiency, as they usually run faster than most baselines yet still
outperform all the listed methods except Akane. They are suited for scenarios prioritizing efficiency.

5.2.2 Comparisons on Fixed Datasets. The 10 fixed datasets are ideal for evaluating the overall
cleaning abilities in different cases. Given the diverse scales across different datasets, we adopt
accuracy as a metric for better presentation effects. It is defined as:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

(
𝑅𝑀𝑆𝐸𝑑𝑖𝑟𝑡𝑦 − 𝑅𝑀𝑆𝐸𝑐𝑙𝑒𝑎𝑛𝑒𝑑

) / (
𝑅𝑀𝑆𝐸𝑑𝑖𝑟𝑡𝑦 − 𝑅𝑀𝑆𝐸𝑐𝑙𝑒𝑎𝑛𝑒𝑑𝑚𝑖𝑛

)
where 𝑅𝑀𝑆𝐸𝑐𝑙𝑒𝑎𝑛𝑒𝑑𝑚𝑖𝑛 is the optimal RMS Error obtained by one of the methods. The best method
yields an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1, while 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ≤ 0 if a method exhibits no or even adverse effects.

Fig. 6. Performance on 10 fixed datasets and the average

Figure 6 shows the performance of 14 different methods on 10 fixed datasets (algorithms that fail
to run correctly are partially omitted). EWMA shows limited efficacy, while AR algorithms often
conduct inaccurate fits and mistakenly modify many initially clean data points. The performance
of 6 anomaly-detection-based methods is also mediocre, which shares similar reasons regarding
undue identification and imprecise cleanings with Section 5.2.1. FFT, TripleES, and GrammarViz
exhibit relatively strong performance among them, aligning with the outcomes and analyses on
the aforementioned variable CA and Romania datasets in Section 5.2.1.
SCREEN performs well by leveraging ground truth to identify large spikes. SpeedChange can

identify and rectify some dirty points but may confuse them with clean data due to its speed change
assumption, leading to subpar performance.
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Our methods generally perform better overall than existing methods (except SCREEN, which uses
the ground truth and never produces an accuracy below 0). It is worth noting that, for the Product
dataset, there is a consecutive error of length 8, which, along with the uniform distribution of the
data, makes our methods’ accuracies relatively low. For the Traffic, ID_7c18, ID_7698, and ID_a40b
datasets, AkaneH+ performs poorly because many small and insignificant changes in the data make
it difficult to capture meaningful recurrent patterns and select precise budgets. For the Product,
Retail, and Passenger datasets, AkaneH+ outperforms Akane and AkaneH since singular trends
exist in these datasets, proving the effectiveness of employing homomorphic pattern aggregation
to detect and address covert deviations.
Combined with the former analyses, Akane and AkaneH, using K-Means symbolization, are

better suited for real-world datasets with specific non-uniform distribution characteristics. Akane
prioritizes high efficacy, whereas AkaneH, exploiting the idea of greed, emphasizes efficiency
while retaining a large portion of efficacy. AkaneH+, using foolproof uniform symbolization and
homomorphic pattern aggregation, is fit for data without such distribution or much prior knowledge.
It prefers efficiency like AkaneH and shows particular proficiency in data having a singular trend.

5.3 Parametric Analysis
In parametric analysis, we assess the impact of the symbolization number 𝑟 , Markov chain order
𝑘 , and the homomorphic pattern distance threshold 𝜖 on the performance. Here, we follow the
common settings of the length and dirty rate in related works, choosing 2 time series of length 1500
from both the CA and Romania datasets for analysis, with a dirty rate of 0.2, along with 2 datasets
ID_7c18 and ID_7698 with real dirty data. We also evaluate our budget selection strategy using
variable CA, Romania, and all of the 10 fixed datasets. When analyzing a specific parameter, we
keep other parameters the same as the settings in Section 5.2 and unchanged, and we use optimal
cleaning results without the automatic budget selection strategy to prevent potential interference.

5.3.1 Varying Symbolization Number 𝑟 . Figure 7 reports the algorithm performances using K-
Means for symbolization and the corresponding DBI with varying 𝑟 . Employing 𝑟 = 6 for dirty CA
and Romania time series, 𝑟 = 3 for ID_7698, and 𝑟 = 2 for ID_7c18, which yields the minimum DBI,
consistently produces nearly optimal cleaning results for both Akane and AkaneH, validating our
proposed approach for selecting the symbolization number 𝑟 in K-Means. It is essential to clarify
that DBI cannot directly predict performance. A high DBI, though suggesting a comparatively
low clustering effect, does not necessarily imply poor performance, as seen in Figure 7 when 𝑟

equals 5 in CA and Romania. This is because the quantity of 𝑟 itself can also affect the pattern
characterization ability. For instance, although DBIs remain stable when 𝑟 ranges from 9 to 15, our
cleaning algorithms’ effectiveness declines due to the pattern sparsity caused by a larger 𝑟 .

For AkaneH+ using uniform symbolization, selecting the optimal 𝑟 is challenging. Slight devia-
tions in symbolization under two adjacent numbers can significantly impact the pattern charac-
terization, leading to varied performances, as depicted in Figure 8. However, AkaneH+ performs
decently within the range specified in Section 3.2 (indicated by the shadows in Figure 8, and the
dashed lines represent 𝑑 = |𝑣 |). This proves that the proposed range aligns with a moderate selection
of 𝑟 , striking a balance that avoids pattern capture challenges while excluding insignificant changes,
which shows the parameter tolerance of uniform symbolization.

5.3.2 Varying Markov Chain Order 𝑘 . The Markov chain order 𝑘 vastly affects performance, as
depicted in Figure 9. Akane and AkaneH excel when 𝑘 = 2 or 3, whereas AkaneH+ usually performs
best with 𝑘 = 3 (sometimes 4), which is entirely consistent with our selection strategy for 𝑘 .

When 𝑘 is 1, Akane and AkaneH show slightly lower performance, struggling to capture intricate
recurrent patterns in the series. AkaneH+ also faces obstacles in homomorphic pattern identification
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CA Romania

ID_7c18 ID_7698

Fig. 7. Vary K-Means symbolization number 𝑟 over 4 datasets with other parameters unchanged

RomaniaCA

ID_7698ID_7c18

Fig. 8. Vary uniform symbolization number 𝑟 over 4 datasets with other parameters unchanged

and aggregation. As 𝑘 exceeds 4, it conforms to our analysis in Section 3.3.1, leading to poor cleaning
ability due to probabilistic sparsity. Akane is impacted the least due to global optimization.

5.3.3 Varying Distance Threshold 𝜖 . Figure 10 reports how the performance of AkaneH+ changes
with varying 𝜖 . When 𝜖 is set to 0, indicating no pattern aggregation, the algorithm usually exhibits
poor cleaning results, confirming pattern sparsity under uniform symbolization. The result on
ID_7698 is an exception owing to its low dirty rate and simple type of dirty data.
Experiments reveal that AkaneH+ performs well on all 4 datasets within the 𝜖 range of 0.01 to

0.08, confirming that an optimal 𝜖 is little influenced by datasets thanks to the normalization and
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Romania

ID_7698

CA

ID_7c18

Fig. 9. Vary Markov chain order 𝑘 over 4 datasets with other parameters unchanged

RomaniaCA

ID_7698ID_7c18

Fig. 10. Vary distance threshold 𝜖 for pattern aggregation over 4 datasets with other parameters unchanged

mean square operation. This range occurs because similar patterns have much smaller distances
than entirely distinct patterns, ensuring stable performance across a broad range. It also enables
AkaneH+ to avoid potential problems outlined in Section 4.1. It is noticeable that AkaneH+’s
performance fluctuates within the CA dataset, possibly due to the aggregation of some unimportant
changes before the actual scaled recurrent patterns. However, its adverse impact is limited.

5.3.4 Evaluation of Automatic Budget Selection Strategy. Table. 3 shows the accuracy of the auto-
matic budget selection strategy on 2 variable and 10 fixed datasets. The accuracy is similar to that in
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Table 3. Accuracy of automatic budget selection strategy

Evaluation Akane AkaneH AkaneH+
Vary CA Length 0.953 0.944 0.966

Vary Romania Length 0.922 0.947 0.973
Vary CA Rate 0.974 0.894 0.939

Vary Romania Rate 0.892 0.853 0.991
10 fixed datasets 0.829 0.833 0.811

Section 5.2.2, and 𝑅𝑀𝑆𝐸𝑐𝑙𝑒𝑎𝑛𝑒𝑑𝑚𝑖𝑛 is the optimal cleaning result obtained under the same parameters
without an auto-selected budget.

The strategy’s performance is closely tied to the dataset’s property, data length, and dirty rate.
Table 3 shows that it consistently performs well in most cases, with an average accuracy of 0.915.

Notably, the performance of this strategy can exhibit minor variations in specific scenarios.
For instance, Akane’s global optimization and pattern sparsity in the short Romanian time series
with a trend may lead to over-cleaning of consecutive clean data points, reducing accuracy. As
the dirty rate increases, the concentration of dirty points can lead to overestimation due to the
reduced frequency of specific patterns. This marginally lowers the strategy’s effectiveness on the
greedy-based AkaneH approach due to under-cleaning. For 6 of 10 fixed datasets with real dirty
data, their dirty rates are pretty low (less than 1%), making it relatively difficult to select the exact
budget precisely. However, even in the worst case, this strategy achieves an accuracy of 0.811, and
the accuracy is usually more than 0.9. Guided by this strategy, our three methods can consistently
outperform the baselines, as detailed in Section 5.2, also emphasizing the strategy’s effectiveness.

6 RELATEDWORK
6.1 Smoothing-Based Cleaning
Two classic smoothing-based methods are the AR (AutoRegressive) Model [21, 33, 47] and MA
(Moving Average) [7], which aim to figure out and eliminate incompatible data points. An AR-type
model is used to fit the data, and a complementary criterion, usually the deviation between the
prediction and the actual value, is provided to check whether a point is dirty. Through the model
fitting, it can learn the normal behavior of data, thus making it capable of identifying and cleaning
dirty data. MA calculates the mean (Simple MA) or weighted mean (Weighted or Exponential
Weighted MA [18]) of a region centered around a point in the original series and uses it as the
cleaned value. MA can obtain good cleaning results by weakening the influence of dirty data.
However, AR neglects the context of data points, while MA alters too much clean data, contra-

vening the minimum change principle.

6.2 Constraint-Based Cleaning
Golab et al. [19] proposed the SD (Sequential Dependency) time series data cleaning algorithm. It
leverages integrity constraints on attribute dependencies to detect data quality. Song et al. [41]
further expressed precise speed constraints in the SCREEN algorithm. It offers an idea of concrete
maximal and minimal speed within a window and a cleaning method meeting the constraint with
minimum change. Later, It has been extended to accommodate multi-speed constraints [16]. These
methods can eliminate violations and achieve ideal results with the help of accurate constraints.
Nonetheless, constraints are sometimes hard to obtain or even unavailable. They may make us

overlook covert dirty points and lead to cleaning decisions far from the truth, which is improper.
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6.3 Statistics-Based Cleaning
Baba et al. [4] designed an IR-MHMM (Multi-variate Hidden Markov Model) to address the inherent
uncertainty in RFID time series. It obtains the most probable hidden states through training and
derives the cleaning results as the most probable observation sequence. Zhang et al. [50] incorporate
the likelihood-based cleaning concept from relational data cleaning [46] to clean small errors in
time series. The core idea involves applying statistics to prioritize low-likelihood data as more likely
to be dirty and subsequently correcting it towards higher-likelihood data. Many works [35, 48, 49]
have demonstrated the effectiveness of this concept. They suggest the speed changes between
consecutive data points are insignificant and more likely to be concentrated around 0. Then, they
transform the cleaning problem into finding a sequence having a higher speed change likelihood
within the given threshold of series change.

Notably, IR-MHMM targets RFID but not general time series data and SpeedChange focuses on
speed change statistics, which is insufficient to make cleaning decisions that are close to the truth.

6.4 Anomaly-Detection-Based Cleaning
Time series anomaly detection is a task aiming to detect anomalies in the time series. Prevalent time
series anomaly detection algorithms have been discussed and compared in a recent comprehensive
study [37]. To the best of our knowledge, no one has systematically studied whether and how
they can be extended to data-cleaning tasks. Some algorithms, like Torsk [20], NumentaHTM [2],
TripleES [1], and FFT [34], can take the forecasting or reconstruction series directly as the cleaning
result. Other algorithms, like encoding-based GrammarViz [38] or distance-based Sub-LOF [6], can
indirectly use the grammar rules or nearest clean neighbors as cleaning suggestions.

However, these algorithms tend to identify windows instead of single points as anomalies, leading
to over-cleaning. Besides, dirty data also impedes their models from reliable cleaning decisions.

7 CONCLUSION
In this study, we address the issue of cleaning dirty values in time series data. We begin by
highlighting the limitations of dirty data identifications and cleaning decisions of prevalent cleaning
algorithms. Recognizing recurrent patterns in the time series and analogizing them to fixed word
combinations in textual data, we integrate the concept of perplexity into time series data cleaning.
We thus formalize the cleaning problem as minimizing the perplexity of a time series within a given
budget and propose a four-phase algorithmic framework. We analyze the impact of dirty data on
recurrent patterns and propose an automatic budget selection strategy to ensure feasibility.Wemake
advanced solutions to the framework, including introducing homomorphic pattern aggregation to
expand the applicable scenarios and suggesting a heuristic algorithm based on greediness to save
resource consumption. These two make the framework more generic. Experiments on 12 real-world
datasets show the superiority of our works over 11 existing algorithms.
In the future, we will consider the relationships between different dimensions in multivariate

time series and extend the probability calculation phase to compute their perplexity. This will
enable us to adapt our framework to multivariate time series. We will also explore the feasibility
of utilizing the concept of perplexity to design a new, more potent, and unsupervised time series
anomaly detection method.
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