
RpDelta: Supporting UCR-Suite
on Multi-versioning Time Series Data

Xiaoyu Han1, Fei Ye1, Zhenying He1,2(B), X. Sean Wang1, Yingze Song3,
and Clement Liu4

1 School of Computer Science, Fudan University, Shanghai, China
{xyhan22,fye21}@m.fudan.edu.cn, {zhenying,xywangCS}@fudan.edu.cn

2 Shanghai Key Laboratory of Data Science, Shanghai, China
3 University of Liverpool, Liverpool, UK

sgyson16@liverpool.ac.uk
4 Chase Grammar School, Cannock, UK

clement.liu@chasegrammar.com

Abstract. In real applications, various cleaning strategies are adopted
to repair a specific time series several times for better effects. These mul-
tiple versions of the repaired time series, along with the raw time series,
are often stored directly in the system for the users. However, as the
scale of data explodes, high storage cost becomes a non-negligible prob-
lem. To address this problem, we propose RpDelta, a repaired time series
storage strategy, under which a repaired time series can be represented
as the combination of the raw time series and a differential file to use the
storage space more efficiently. Meanwhile, we design a sequential reading
strategy based on a finite state machine to make RpDelta adaptive to
practical uses, which will almost not introduce additional time and space
overheads. We also take the UCR-Suite algorithm as an example to intro-
duce our optimizations on a simultaneous-operation circumstance with
the help of RpDelta’s properties. The extensive experiments show the
effectiveness and efficiency of our work.

Keywords: Repaired time series · Multiple versions · Differential file

1 Introduction

Data quality for time series is critical in time series analysis and forecasting.
The credibility of the results depends on assumptions that collected time series
are reliable, which only sometimes hold in reality. For example, in finance, the
correct rate of stock information on Yahoo Finance is 93% [11]. Moreover, in
manufacturing, the collected data may be partially noisy or missing due to the
unreliability of the physical sensor devices [4]. Therefore, before operating on
time series, to avoid the degradation of analysis and forecasting caused by poor
data quality, the data quality of time series should be checked from several
aspects, such as data validity, completeness, and consistency [9].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13943, pp. 205–220, 2023.
https://doi.org/10.1007/978-3-031-30637-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30637-2_14&domain=pdf
https://doi.org/10.1007/978-3-031-30637-2_14

206 X. Han et al.

Recent works have proposed many data-cleaning algorithms to repair time
series data to improve data quality. However, as we discuss below, it is diffi-
cult for a single data-cleaning algorithm to meet the requirements of real-world
applications. Therefore, we will adopt different cleaning algorithms or param-
eters under one specific cleaning algorithm for better effects according to our
comprehension of the collected data as time passes. In this way, we cannot over-
write the raw time series after we get a repaired one, which means that the
raw one is non-tamperable [8]. Actually, Apache IoTDB integrates data-cleaning
algorithms as functions into SQL operations, which keeps the raw time series
unchanged unless we use update operation. So, a better way is to store multiple
repaired time series separately from the original time series. Figure 1(a) shows
the different versions of repaired time series derived from the same raw time
series.

Fig. 1. (a) Subsequence matching on traditional multiple versions of repaired time
series.(b) An optimization of subsequence matching under RpDelta storage strategy.

Under the above constraint of storing both the original time series and mul-
tiple repaired time series, there are several fundamental problems:

1. Unnecessary Storage Use. What is required to be repaired only accounts
for a small part of the raw time series, generally at most 15%, because anoma-
lies are often rare [2] or the collected data is untrusted. In other words, the
repaired time series stores a lot of data identical to the raw one, which causes
an enormous waste of space resources.

2. High Disk I/O. Sometimes we need to conduct the same operation(e.g.,
subsequence match) on all the repaired time series to analyze the effects of
the data-cleaning algorithms and ensure robustness. To achieve this, we must
read all the repaired time series, thus leading to a great deal of disk I/O,
including many redundancies and jeopardizing the life of the disks.

3. Extra Operation Time Overheads. Considering the similarities between
different versions of repaired time series, we will perform many repetitive
calculations during the operation, which incurs extra time overheads.

To solve the above problem, we design a new storage strategy named RpDelta
for multiple versions of repaired time series. Besides the raw time series, RpDelta

RpDelta: Supporting UCR-Suite on Multi-versioning Time Series Data 207

stores all the repair operations from the raw to a repaired time series in a differ-
ential file called delta file. The number of delta files corresponds to the number
of repaired versions. In this way, we can lower the storage cost from a wholly
repaired time series to a delta file containing only necessary repairs. Since we
can quickly restore the repaired time series according to its corresponding delta
file and the raw time series, this will not harm the data integrity. Moreover, we
redesign the sequential reading strategy under RpDelta based on the finite state
machine approach and use the subsequence matching algorithm UCR-Suite [6]
as an example to introduce the way to lower the disk I/O and repetitive calcula-
tions. Figure 1(b). shows the basic idea of RpDelta. It can be seen as extracting
the unique part of each repaired time series to organize different delta files to
replace the complete series. Meanwhile, the database engine can encapsulate all
operations modifications under the RpDelta structure. Users do not need to do
additional operations by themselves and can directly call the given interface.

To sum up, the main contributions of our paper are summarized as follows:

– We propose RpDelta, a storage strategy aimed at multiple versions of the
repaired time series, which can significantly lower storage cost while main-
taining data integrity.

– We further propose a sequential reading strategy under RpDelta based on
the finite state machine approach. This approach possesses the same time
complexity O(n) and space complexity O(1) as reading the complete time
series directly, without prior restoration of the complete repaired time series.

– We take the UCR-Suite subsequence searching algorithm as an example to
introduce the optimization of the circumstance about performing the same
operations on all repaired time series. This optimization can efficiently reduce
the disk I/O and unnecessary time overhead.

– We conduct extensive experiments on the UCR Time Series Archive. They
demonstrate our optimizations of storage use, disk I/O and time overhead.

2 Preliminaries

2.1 Basic Concepts

Definition 1 (Time Series). A time series is a sequence of data points ordered
by the time that can be denoted as the form T = (t1, t2, . . . , tn), where n =
|T | stands for the length of time series T . A subsequence of T with length k
is part of the whole time series that can be denoted as the form Ti,k, where
i stands for its start position and satisfies 1 ≤ i ≤ n − k + 1. For q time
series, we use T 1, T 2, . . . , T q to distinguish them and the same for subsequences
T 1
i,k, T

2
i,k, ...T

q
i,k.

Definition 2 (Distance Metrics). Here we give the definition of two existing
distance metrics used for time series calculation in our work, Euclidean distance
(ED) and Dynamic Time Warping (DTW).

208 X. Han et al.

Given two time series T and T ′ with length n:

ED(T, T ′) =

√
√
√
√

n∑

i=1

(ti − t′i)2 (1)

DTW (O,O) = 0,DTW (O, T) = DTW (T,O) = +∞

DTW (T, T ′) =

√
√
√
√
√min

⎧

⎨

⎩

DTW (T1,n−1, T
′
1,n−1)

DTW (T, T ′
1,n−1)

DTW (T1,n−1, T
′)

+ (tn − t′n)2
(2)

where O stands for empty series, T1,0 = T ′
1,0 = O.

We use dist(T, T ′) to signal the distance between T and T′ in this paper.

2.2 Problem Statement

Definition 3 (Subsequence Matching Problem). Given a time series T
with length n and a query time series Q with length m(usually m � n), find a
subsequence of T starting from position i which minimizes dist(Ti,m, Q).

3 Repaired Time Series Storage

3.1 RpDelta Construction

The design for the new storage strategy RpDelta is inspired by the properties of
the repaired time series. We investigated that the content needed to be repaired
in a time series often accounts for only about 3% to 5% of the whole, at most no
more than 15%, so most of the time series data after the repair remains the same
as the raw series. In this case, considering the immutability of the raw series, we
can use a differential file to record all the repair operations needed from the raw
series to the repaired time series, which is similar to the binlog in MySQL. Here
we denoted this differential file as a delta file. In Fig. 2, the delta file records three
different operations that are above the arrow. We can quickly obtain a complete
repaired time series by sequentially implementing those operations on the raw
time series, as the Fig. 2 shows. This strategy helps us to ensure data integrity
while lowering the storage costs. Our later experiments prove this point.

3.2 Delta File StorageFormat

We next define the exact form of the delta files. Here how to represent a repair
operation is the foremost thing. After we research the current data cleaning
algorithms, we classify the operations into three basic types: insert, delete and
replace. We may use insertion in interpolation, deletion in removing repetitive
samplings, and replacement in fixing the noises. The other complicated opera-
tions can be decomposed into these three types.

RpDelta: Supporting UCR-Suite on Multi-versioning Time Series Data 209

Moreover, we involve three parameters: start position, operation length, and
data points. All the operations need start position and operation length to
describe their scopes. The start position of insertion means we will insert a seg-
ment before the position in the raw series. The start position of deletion means
we will delete a segment with this position in the raw series as the first data
point. Only insertion and replacement need data points to determine their oper-
ation contents. In this way, we can define an operation as “Type Length Position
Data(Array)”. Take “INS 2 1 [9, 6]” as an example, it means that we will insert
an array [9, 6] whose length is 2 into the position before the time point 1. We
can see this example and other operations in Fig. 2.

Fig. 2. Using a raw time series and a delta file to restore the repaired time series.

Besides, the data points in different time series have distinct types for various
uses. Suppose in a situation requiring high precision, treating double data as float
in the delta files is a disaster. So we should be informed of the data points’ type
when recording the repaired operations. At the beginning of the delta file, we can
include the type information matching with the data points in the time series.
Of course, we can add other information as well if necessary.

In short, a delta file involves two parts, the first part is some basic information
about the repair operations and the corresponding time series, and the second
part is a set of operations stored in the above format.

3.3 Delta File Constraints

To avoid ambiguity in different organizational forms in delta files, here we make
some reasonable constraints to make our processing and explanation clearer and
more convenient.

Constraint 1 (Position Constraint). A repair operation’s start position
refers to the raw series’s corresponding position
For insertion, it may cause the index position in the raw series to change, so
we need to make this constraint to ensure a delta file is free from duality of
position. Sometimes the repair positions are off the raw series, such as inserting
first and then restricting the speed of the inserted segment. However, we can
merge them into one operation of inserting an already speed-restricted segment,
performed on the raw series and equivalent to the previous two operations. The
above shows the rationality of this constraint.

210 X. Han et al.

Constraint 2 (Overlap Constraint). There is no overlap between the
two repair operations
According to constraint 1, we will not perform any operation on the inserted
or deleted segments. If two insertion or deletion operations are performed in
the same position, we can merge them according to their order. If an insertion
operation shares the same position with a deletion or replacement operation, that
has no problem because the inserted segment will not be affected. Some illegal
situations, such as replacing or deleting some parts of a deleted subsequence,
will not be allowed in our delta files. In this way, this constraint is reasonable.

Constraint 3 (Order Constraint). The repair operations are sorted by
the position order in the delta file
Combining constraint one with constraint two, we can conclude that each repair
operation is independent of the other. So swapping the order between any two
operations in the delta file will not affect the correctness of the whole repair
process. On this occasion, to deal with RpDelta more conveniently, we sort the
repair operations in the delta files by position in ascending order.

4 Operations and Optimizations on RpDelta

When implementing analysis on time series, we are likely to perform operations
on them. Sometimes we need to find the best-matching subsequence, while other
times, we need to cluster multiple different time series. The existing algorithms
are based on the input of a complete time series, however, under RpDelta each
time series consists of two parts, thus making us fail to perform the algorithms
directly. We will take the subsequence searching algorithm UCR-Suite as an
example to introduce how to support some basic operations under RpDelta.
Moreover, we will also utilize RpDelta’s properties to accelerate some circum-
stances.

4.1 Sequential Reading

Sequential reading (reading the data points one by one) is the most basic opera-
tion on time series, and we can find it in many prevalent time series algorithms.
Most of the algorithms read the data points of a time series one by one for calcu-
lations, even if in a batch process(data will be put into the buffer at first). On this
occasion, we need to implement it on RpDelta first for further implementation.

A simple and intuitive approach is to restore the repaired time series accord-
ing to the raw series and the corresponding delta file and then read it sequentially.
Nevertheless, we will encounter two problems using this method. First, to restore,
we need to put the entire raw series into the memory, which is a large burden.
Second, no matter what data structure we use, the time complexity to restore a
time series with length n and m operations in its delta file will be O(mn), since
insertion and deletion need O(n) time to complete. The restoration process itself
will likely take longer than the time series algorithms. Under this circumstance,

RpDelta: Supporting UCR-Suite on Multi-versioning Time Series Data 211

we need to design a more efficient and clever way to read sequentially in real
time on RpDelta. Previously, we read the raw series from start to end directly,
so our approach reads both the raw series and the delta file only once.

Problem Simplification. Here, we refer to where we can get the data as the
data source. In traditional complete storage, the data source is the raw time
series, and it is unique, so it is easy to conduct each read. While under RpDelta,
all the data points in repaired time series can be obtained from either the raw
series or the corresponding delta file, which means that we have two data sources.
So considering both data sources at the same time is necessary. In this way, we
can reduce the sequential reading problem to the strategy of deciding the data
source of the next read according to the current reading status.

FSM (Finite State Machine) Method. We use FSM to solve the problem
of data source choice. FSM is a computational model with a finite number of
states, which can transfer from one to another in response to some inputs.

Here we use ST_Raw, ST_Ins, ST_Del, and ST_Rep to stand for the
four different reading states, and we use ST_Cmp to stand for a checking state.

While dealing with a repaired time series, we first check the position of the
following repair operation in ST_Cmp. Before arriving at this position, the
repaired time series is the same as the raw. In this way, we can choose the raw
series as the data source in ST_Raw and then return to the ST_Cmp state for
the next check. While encountering such a position, we move to different states
according to their corresponding operation types and return to ST_Cmp when
the operation is over after several cycles. Table 1 shows the change between
different states.

Table 1. Transfer between different states

Now ST_Cmp ST_Ins/Del/Rep ST_Raw

Input (Pos) matched not matched End of read Not end of read End of read

Next ST_Ins/Del/Rep ST_Raw ST_Cmp Remain unchanged ST_Cmp

In the insertion state, the delta file is the data source, and we will directly
return to ST_Cmp when finished. In the deletion state, we take raw series as
the data source and skip a specific length of raw series before reading the point
we want. Finally, in the replace state, the delta file is the data source, and we
also need to skip the corresponding subsequence replaced in the raw series. This
method allows us to read the repaired time series on RpDelta sequentially, almost
without extra time or space complexity. Figure 3 exemplifies the reading process.

212 X. Han et al.

Fig. 3. Reading process in different reading states.

With the help of the above state machine, the space complexity can reach
O(1), and we only need to read the raw series and Delta File once to obtain the
repaired time series sequentially on RpDelta.

4.2 Fundamental Subsequence Search

Here we take the UCR-Suite algorithm, a prevalent subsequence searching algo-
rithm, as an example to illustrate how to implement such kind of operations on
RpDelta.

The time series addressed by UCR-Suite are stored as .txt format files in the
file system. The algorithm uses file pointers to read them sequentially, reflecting
in the code as fscanf. Under the RpDelta strategy, we only need to replace it
with a reading interface implemented according to the FSM method, and the
rest of the algorithm remains unchanged.

The introductions of delta files and FSM reading strategy will bring about
extra time overhead in the read-in of the UCR-Suite. However, it is small enough
to be ignored, especially when the cost of the calculations is high. Our experi-
ments displayed in Sect. 5.3 prove this point in detail.

Through the example of UCR-Suite, we can see that for all operations similar
to it, in which we need to read the data points in time series one by one, the
previous reading method(e.g., file pointer or others under different storage form)
can be modified to the interface based on FSM method without any pain. This
also proves the practical feasibility of RpDelta.

4.3 Subsequence Search on Multiple Repaired Time Series

Multi-versioning time series data is used to provide robustness for downstream
tasks. To avoid potential errors caused by a single cleaning algorithm, we provide
multi-versioning results or select the most reliable version for a given task. In
this process, comparison and analysis between different versions of time series
will bring unnecessary I/Os and repetitive calculations. For example, in UCR-
Suite, we will calculate the distance between the query series and a repaired time
series subsequence to find the best match. We are likely to read and take the

RpDelta: Supporting UCR-Suite on Multi-versioning Time Series Data 213

same subsequence to calculate many times because this part does not need to
be repaired and thus appears in many repaired time series, which causes much
unnecessary extra time overhead.

Given that our RpDelta solves the repetitive storage by recording duplicates
in one raw series and storing the exclusive parts in corresponding delta files,
we will use this property to eliminate the repetitive calculations. Here we still
take UCR-Suite as an example to illustrate how to optimize such occasion. Our
optimization includes three steps.

Parallel Read Processing. We use a parallel approach to read multiple series
at the same time. We should note that this approach is parallel abstractly and
does not mean multiple cores or threads here(though it can be realized in such
ways). In the past, we read in a data point, calculated the metrics, compared
the distance with the best-so-far, and then read in the following data point and
repeated this process. Now we read in an array directly, which consists of many
data points from different time series. After that, we take the same procedure
above on each of them. Our core idea of optimization is to reuse the calculations.
If we deal with the time series one by one in this situation, we need to pay a
lot for storing multiplexing value. It is because we must record the calculations
of all the possible repetitive parts during the first repaired time series process.
When reading them parallel, we just need to store them temporarily because
they will soon be consumed by the others and can be thrown.

Moreover, we only need to access the raw series on the disk once in parallel
reading, lowering the I/O cost. This is because we will put a data point into
the buffer in the memory when first met, and while it has been used by all the
sequential readings of the repaired time series(FSM method), it will be removed
from the buffer. In this way, we can also lower time overhead since there is no
need to access the disk for the raw series frequently.

Repetitive Subsequence Judgment. Moreover, we must decide on which
circumstance we should reuse the calculations. As mentioned above, to the iden-
tical subsequences appearing many times, we just need to calculate once and
store the value for later use. Therefore, one of the most important things is to
propose a strategy that allows us to judge repetitive subsequences in different
repaired time series. Here, we propose a coarse-grained method to determine
them: if a subsequence has not been repaired by any data-cleaning algorithm,
it is our target because it will appear in all of the repaired time series. In this
method, we deliberately abandon many possible repetitive subsequences, such
as those that appear l − 1 times in the total l repaired time series. This makes
the optimization more manageable and less costly in terms of implementation,
maintenance and judgment. On the other hand, if we insist on finding all of the
repetitive subsequences, chances are that its time cost will outweigh what we
save on the calculation reuse.

In the concrete implementation, we scan all the delta files and mark all the
operation positions during preprocessing. After this, we can get an array B in

214 X. Han et al.

which B[i] stands for the total number of operations on raw series Ti−m+1,m(m
is the query length). Here we should notice that the influence of an operation is
in the range of its length, not the single start data point. By examining B[i] = 0
or not, we can quickly learn whether a subsequence is our target during runtime
with the time cost of O(1).

Algorithm 1: Optimizations in UCR-Suite under DTW metric.
Input: n = |T k|, m = |Q|, q is the series number
Output: The best-match subsequence in each time series

1 for p ← 1 to q do
2 for i ← 1 to n − m + 1 do
3 if T p

i,m belongs to repetitive subsequence then
4 if meet T p

i,m first time then
5 Calculate lb_kim and put into cache(may early abandon);
6 else
7 Get lb_kim from cache;
8 if lb_kim < bsfp and is not completely calculated then
9 Calculate lb_kim more exactly and refresh it in cache;

10 end
11 end
12 else
13 Calculate lb_kim;
14 end
15 if lb_kim < bsfp then
16 Continue to calculate lb_k, lb_k2, dtw in order like above;
17 else
18 Early abandon;
19 end
20 end
21 end

Repetitive Calculation Elimination. In UCR-Suite under DTW metric,
the main computations are lb_kim lower bound generated by the LB_KimFL
algorithm, lb_k lower bound generated by the LB_KeoghEQ algorithm, lb_k2
lower bound generated by the LB_KeoghEC algorithm and the DTW itself.
All the above lower bound are served for early abandoning in UCR-Suite. We
should point out that what we get in the calculation may be different from the
exact value of them because of early abandoning. When first meeting a repetitive
subsequence, we will manage it as usual and save the main computations in a
buffer. Next time we process it again, all the saved computations will be reused.
Suppose they are enough for early abandoning or distance calculation. In that
case, we can eliminate repetition and adopt them; if not, we will calculate again
for more exact values and update them in a buffer. Algorithm 1 shows part of
this procedure related to lb_kim, and other computations are similar, so we

RpDelta: Supporting UCR-Suite on Multi-versioning Time Series Data 215

omit them here. In this way, most calculations of repetitive subsequences can be
combined into nearly one or, at most several times, thus significantly improving
the subsequence-searching efficiency on multi-versioning time series.

5 Experiments

5.1 Experimental Setup

Datasets. We conduct extensive experiments on the latest UCR Time Series
Classification Archive Dataset [3], which contains plenty of real-world datasets,
such as ECG and Electric Devices data.

Baselines. Our baseline stores every repaired time series entirely on the disk
for the storage experiment. In addition, to the operation experiment, since our
optimization is introduced with the example of the UCR-Suite algorithm, here we
use the UCR-Suite algorithm under ED and DTW respectively as our baselines
to show our optimization. We get the implementation of UCR-Suite from its
official website. Moreover, we identify that UCR-Suite uses the idea of early
abandoning to accelerate the matching process, which makes our optimization
of repetitive calculation less influential, but this is not always the case. Therefore,
to make the results of the experiments more apparent to us, we modify UCR-
Suite under the ED metric by removing the early abandoning strategy and use
it as a baseline as well.

Our experiments use ED and DTW to stand for the raw UCR-Suite algo-
rithm under the corresponding distance metric. ED− stands for UCR-Suite
under ED without early abandoning. EDp uses parallel read processing under
ED, and ED-M uses repetitive subsequences elimination.

The reason why we do not choose the latest subsequence searching algo-
rithms, such as KV-Match [12] or ULISSE [5], as the baselines is that what
we have done is not a searching algorithm but an idea of optimization under
RpDelta. Meanwhile, such algorithms need many times the space we require
because they use indexes to accelerate.

Implementation Details. We use a 107 long time series with the data type
of double as the raw time series. This time series is concatenated by the time
series in UCR Archive. We obtain query series of the desired length from the
subsequence of the raw time series. In terms of repaired time series, we generate
them artificially under the guidance of the Pareto principle. All of our data-
cleaning strategies randomly put 80% of the repairs on 20% of the raw series
and 20% of the repairs on 80% of the raw series. Replacement operations account
for 60%, while insertion and deletion account for 20% respectively. The average
length of each repair operation is 10, and the value of data points in operation
is between [μ − σ, μ + σ], where μ is the mean and σ is the standard deviation
of the raw time series.

216 X. Han et al.

In the storage experiment, all the time series are stored as .txt files in the file
system. For convenience in observing, we directly use the space of the raw time
series to approximate the space of the repaired time series, which is reasonable
in terms of mathematical expectations and will not influence our conclusions.

In the operation experiment, we have 3 key parameters: series number,
repair rate, and query length. Here the series number reflects the number of
data-cleaning strategies used to achieve multi-versioning time series. Each data-
cleaning strategy corresponds to a version. We set the standard value of the
series number to 6, the repair rate to 4%, and the query length to 128. We take
the standard value if we do not specify the parameters’ values. In the differ-
ent experiments, we will adjust the value of the corresponding parameter. The
Sakoe-Chiba Band [7] used on DTW calculations is 0.05(ratio to query series).

Testbed. Our algorithms are implemented in C++ and compiled by g++ 7.5.0
on Ubuntu 18.04 system with a 4.15.0-189-generic Linux kernel. We conduct
experiments on an Intel(R) Xeon(R) Silver 4208 CPU @ 2.10 GHz machine with
64 GB RAM.

5.2 Storage Performance

We compare the storage use of RpDelta with the complete storage baseline.
Table 2 shows RpDelta’s storage performance. We find out from Table 2 that
the storage use ascends as the repair rate and series number increases, but is
much slower than the baseline, with less than 20% of the baseline at 8 repaired
time series.

Table 2. Storage use of multi-versioning repaired time series under different repair
rates and series numbers and the value of θ to each repair rate.

Rate Number
1 2 4 6 8 θ

Baseline 182.02M 273.03M 455.04M 637.06M 819.08M 1
1% 91.92M 92.83M 94.67M 96.48M 98.30M 0.01001
2% 92.84M 94.67M 98.30M 101.95M 105.61M 0.02006
4% 94.66M 98.30M 105.56M 112.86M 120.12M 0.03999
8% 98.32M 105.60M 120.18M 134.77M 149.29M 0.08005

Experiments show that as the number of time series increases, the ratio of
space to the baseline will decrease, but it will not converge to 0. Here we assume
that the size of the delta file under a specific repair rate is a fixed value γ, and
the size of a repaired time series or the raw one is a fixed value λ. The total

RpDelta: Supporting UCR-Suite on Multi-versioning Time Series Data 217

number of repaired time series is n. We find that the ratio will converge to the
value θ:

θ = lim
n→+∞

n · γ + λ

(n + 1)λ
=

γ

λ
(3)

The last column of the Table 2 shows our experiments’ value of θ at different
repair rates. It illustrates the limits of RpDelta’s space-saving capabilities.

This experiment demonstrates that in the situation of multi-versioning time
series, RpDelta can effectively lower the space cost to a low level and solve the
problem of unnecessary disk storage occupation.

5.3 Operation and Optimization Performance

We conduct extensive experiments to demonstrate the effectiveness of our opti-
mization under different circumstances. Experiments show that we usually have
a 60%–100% speed improvement under the ED metric, and under the DTW
metric, a 30%–50% one. Moreover, they also display the good scalability of our
method. The specific experiments are as follows.

Fig. 4. (a) The speedup ratio of post-optimized algorithm to the baseline under dif-
ferent series numbers. (b) The running time of ED−, ED−

p , ED−
p -M under different

series numbers. (c) The average number of eliminated repetitive subsequences in a
repaired time series under different series numbers (divide by series number - 1 when
calculating).

Effects of Series Number. In this experiment, we explore the impact of the
series number on our optimization. Figure 4(a) shows the speedup ratio under
different series numbers. When the series number is 1, we only apply the FSM
method described in Sect. 4.1. At this point, the sequential reading time under
the RpDelta strategy is almost the same as that of the baseline. Only maintaining
the state machine to select the data source makes it slightly slower, but it does
not matter.

As the series number increases, the speedup ratio gradually ascends, but
the growth rate becomes smaller. We can get the reason from Fig. 4(b) Experi-
ments on UCR-Suite without early abandoning show that despite the more I/O
time saved by parallel read processing in the situation of more series, the effect
of repetitive calculation elimination also descends. This is because the random

218 X. Han et al.

distribution of the repair part leads to a decreasing number of repetitive subse-
quences per series, as Fig. 4(c) exhibits. These two factors together give rise to
the results in Fig. 4(a).

Fig. 5. (a) The speedup ratio of post-optimized algorithm to the baseline under differ-
ent query length. (b) The running time of ED−, ED−

p , ED−
p -M under different query

length. (c) The average number of eliminated repetitive subsequences in a repaired
time series under different query length (divide by series number - 1 when calculating).

Effects of Query Length. In this experiment, we explore the impact of the
query length on our optimization. Figure 5(a) shows the speedup ratio under
different query lengths. The speedup ratio remains at a high level of more than
1.8 under ED and 1.5 under DTW when the query length is less than 128 and
gradually descends to a comparatively low level (nearly 1) as the query length
increases. This is because it is more difficult to find such long repetitive subse-
quences on this occasion, as Fig. 5(c) exhibits. Meanwhile, the increase in query
length leads to a longer running time, thus making the optimization of parallel
read processing inconspicuous, which is displayed in Fig. 5(b).

Fig. 6. (a) The speedup ratio of post-optimized algorithm to the baseline under differ-
ent repair rates. (b) The running time of ED−, ED−

p , ED−
p -M under different repair

rates. (c) The average number of eliminated repetitive subsequences in a repaired time
series under different repair rates (divide by series number - 1 when calculating).

Effects of Repair Rate. In this experiment, we explore the impact of the
repair rate on our optimization. Figure 6(a) shows the speedup ratio under differ-
ent repair rates. The speedup ratio declines slowly when the repair rate ascends

RpDelta: Supporting UCR-Suite on Multi-versioning Time Series Data 219

but still maintains a high level. Generally speaking, the higher the repair rate,
the fewer the repetitive subsequences, but the speedup ratio is not seriously
affected here. We can get the reason for this phenomenon from the experiment
on ED−. Through Fig. 6(b), we can find that the running time of ED and EDp

is nearly unchanged as the repair rate ascends. Nevertheless, repetitive subse-
quence elimination has little effect at a high repair rate because few repetitive
subsequences exist, as Fig. 6(c) exhibits. Parallel read processing plays a more
significant role in speedup when the query length is 128, and the series number
is 6, which explains Fig. 6(a).

To sum up, our optimization of operations on RpDelta owns a significant
effect. The parallel read processing can provide stable improvement, and the
repetitive subsequences elimination is considerably helpful, especially when the
series number, query length, and repair rate are relatively small and still has
sound effects when they increase.

6 Related Work

There are many studies on time series data cleaning and time series operations.
Xi Wang pointed out that the current data-cleaning algorithms can be divided
into three categories [11]. The first is a smoothing-based cleaning algorithm,
such as the interpolation method used by S. Xu [13]. The second is a constraint-
based cleaning algorithm. For example, Shaoxu Song proposed SCREEN [10],
which uses the speed restrictions on value changes in a given interval. The third
is a statistics-based cleaning algorithm, such as a method based on the HMM
for RFID data cleaning put forward by Baba et al. [1]. However, all the above
algorithms just focus on how to repair the time series more effectively and ignore
the high storage costs of repaired time series.

In time series operations, there exist many kinds, like time series subsequence
searching, time series clustering, and so on. Our works focus on time series
subsequence searching. UCR-Suite is a state-of-the-art approach to solving the
normalized subsequence searching problem, while KV-Match [12] and ULISSE [5]
are the latest searching algorithms based on indexes. However, current operations
are performed on the complete time series and fail to deal with the circumstances
of many repetitive subsequences between sequential input time series.

7 Conclusion

In this paper, we propose a repaired time series storage strategy called RpDelta
for efficient use of storage space. We first introduce the basic idea and the stor-
age format of RpDelta. Then, we impose three constraints on the delta files in
RpDelta to avoid possible ambiguities. In order to put RpDelta into practical
use, we design a sequential reading strategy based on a finite state machine and
take UCR-Suite as an example to illustrate how it works in a concrete operation
of time series. Moreover, we also optimize the simultaneous-operation circum-
stance with the help of the RpDelta’s properties. The experiments performed on

220 X. Han et al.

UCR 2018 archive show that we can save more than 80% of the storage space by
using RpDelta when the series number is 8. Meanwhile, we can usually obtain
a 60%–100% speed improvement under the ED metric and 30%–50% under the
DTW metric, which shows the effectiveness and efficiency of our approach.

Acknowledgements. The authors would like to thank all the anonymous reviewers
for their insightful comments and suggestions. This work was supported by the National
Key R&D Program of China (No. 2021YFB3300502).

References

1. Baba, A.I., Jaeger, M., Lu, H., et al.: Learning-based cleansing for indoor RFID
data. In: SIGMOD Conference, pp. 925–936. ACM (2016)

2. Benkő, Z., Bábel, T., Somogyvári, Z.: Model-free detection of unique events in time
series. Sci. Rep. 12(1), 227 (2022)

3. Dau, H.A., Keogh, E., Kamgar, K., et al.: The UCR time series classification
archive (2018). https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

4. Jeffery, S.R., Alonso, G., Franklin, M.J., Hong, W., Widom, J.: Declarative support
for sensor data cleaning. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.)
Pervasive 2006. LNCS, vol. 3968, pp. 83–100. Springer, Heidelberg (2006). https://
doi.org/10.1007/11748625_6

5. Linardi, M., Palpanas, T.: Scalable data series subsequence matching with ULISSE.
VLDB J. 29(6), 1449–1474 (2020). https://doi.org/10.1007/s00778-020-00619-4

6. Rakthanmanon, T., Campana, B.J.L., Mueen, A., et al.: Searching and mining
trillions of time series subsequences under dynamic time warping. In: KDD, pp.
262–270. ACM (2012)

7. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

8. Sathe, S., Papaioannou, T.G., Jeung, H., Aberer, K.: A survey of model-based
sensor data acquisition and management. In: Aggarwal, C. (ed.) Managing and
Mining Sensor Data, pp. 9–50. Springer, Boston (2013). https://doi.org/10.1007/
978-1-4614-6309-2_2

9. Song, S., Zhang, A.: IoT data quality. In: CIKM, pp. 3517–3518. ACM (2020)
10. Song, S., Zhang, A., Wang, J., Yu, P.S.: SCREEN: stream data cleaning under

speed constraints. In: SIGMOD Conference, pp. 827–841. ACM (2015)
11. Wang, X., Wang, C.: Time series data cleaning: a survey. IEEE Access 8, 1866–1881

(2020)
12. Wu, J., Wang, P., Pan, N., et al.: KV-match: a subsequence matching approach

supporting normalization and time warping. In: ICDE, pp. 866–877. IEEE (2019)
13. Xu, S., Lu, B., Baldea, M., et al.: Data cleaning in the process industries. Rev.

Chem. Eng. 31, 453–490 (2015)

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://doi.org/10.1007/11748625_6
https://doi.org/10.1007/11748625_6
https://doi.org/10.1007/s00778-020-00619-4
https://doi.org/10.1007/978-1-4614-6309-2_2
https://doi.org/10.1007/978-1-4614-6309-2_2

	RpDelta: Supporting UCR-Suite on Multi-versioning Time Series Data
	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts
	2.2 Problem Statement

	3 Repaired Time Series Storage
	3.1 RpDelta Construction
	3.2 Delta File StorageFormat
	3.3 Delta File Constraints

	4 Operations and Optimizations on RpDelta
	4.1 Sequential Reading
	4.2 Fundamental Subsequence Search
	4.3 Subsequence Search on Multiple Repaired Time Series

	5 Experiments
	5.1 Experimental Setup
	5.2 Storage Performance
	5.3 Operation and Optimization Performance

	6 Related Work
	7 Conclusion
	References

